17/08/05 10:01:17.84 v2fSy4wb.net
>>381
最後三角不等式使ってるようだけど、正しくは |a-b|+|b-c| >= |a-c| です
不等号が逆
k=8/27のとき 例えば (a,b,c) = (1,-3,1) で成り立たない
393:132人目の素数さん
17/08/05 10:03:10.14 v2fSy4wb.net
ていいつつ自分でも間違えてた
(a,b,c)=(3,-3,1)
394:132人目の素数さん
17/08/05 10:06:55.20 Ulw6Zmyj.net
>>382
最後は三角不等式じゃなくて、等式でござるなり。 a≧b≧cの仮定を用いて、
|a-b|+|b-c|+|c-a| = (a-b) + (b-c) + (a-c) = 2(a-c)
395:132人目の素数さん
17/08/05 10:15:05.87 Ulw6Zmyj.net
>>381
a,b,cは実数ということを忘れていたので、以下は0より大きくならんでござるな。
> (a+b+c)^3 - (a-c)^3 = (b+c)(3a^2+3ab+b^2+bc+c^2) > 0
396:132人目の素数さん
17/08/05 11:17:13.28 v2fSy4wb.net
>>384
そうか
かくいう自分も回答にミス発見してそもそも(a+b+c)^3で上からも下からも抑えられないことがわかってでござる
397:132人目の素数さん
17/08/05 14:47:07.90 ACnIlB8L.net
>>381
|(a-b)(b-c)(c-a)|≦(1/4)|a-c|^3 >>261
ですが、a+b+c=0 の場合もアリなので…
398:132人目の素数さん
17/08/05 19:20:38.72 Ulw6Zmyj.net
>>2 [10] 思考力を鍛える不等式(大学への数学・別冊)、栗田哲也、東京出版、2014年 より
(1) [10] P.28
a>b>c>0 に対して、(a-b)sqrt(x+c) + (b-c)sqrt(x+a) + (c-a)sqrt(x+b) < 0
a,b,cの大小関係いらないんじゃ?
(2) [2006 山形大(医)] [10] P.77
三角形の辺長 a,b,c に対して、(2+a^2)(2+b^2) > 2c^2
⇒ (2+a^2)(2+b^2) ≧ 2(a+b)^2 > 2c^2
a.b.c>0 に対して、(2+a^2)(2+b^2)(2+c^2) ≧ 9(ab+bc+ca) だから、
これらを組合せたりして、なにか改造できないかな?
(3) [10] P.82
a,b,c>0に対して、(abc)^2 + a^2 + b^2 + c^2 + 2 ≧ 2(ab+bc+ca)
aの関数として微分して証明しているけど、他の証明ないかな。平方和とか…
(4) [10] P.115, 116
四面体ABCDに対して、
(i) ∠AOB + ∠BOC > ∠COA
(ii) ∠AOB + ∠BOC + ∠COA < 2π
[1992 東大(後)] >>2 [10] P.116
空間内の相異なる4点A,B,C,Dに対して、
(iii) ∠ABC + ∠BCD + ∠CDA + ∠DAB ≦ 2π
(iii)の条件を四面体ABCDに限定したら、等号がなくなるだけかな?
(5) [10] P.120
四面体ABCDに対して、vec(OA), vec(OB), vec(OC), vec(OD) を a,b,c,dと略すとき、
|a| + |b| + |c| + |a+b+c| > |a+b| + |b+c| + |c+a|
これは Hlawka's ineequality かな?
(6) [2012 大阪教育大]、[10] P.125
x,y>0 かつ (x^6)(y^2) - (x^5)(y^3) + (x^5)(y^5) - (x^4)(y^6) ≧ 4 のとき、x^3+y^2≧3
どうやって、こういう変な条件を出したのか分からないから、類題を作りにくい。
(7) [2013 北海道大]、[10] P.126
a,b,c,x,y>0 に対して、ax^(a+b+c) + by^(a+b+c) + c ≧ (a+b+c)(x^a)(y^b)
⇒ a,b,c,x,y,z>0 に対して、ax^(a+b+c) + by^(a+b+c) + cz^(a+b+c) ≧ (a+b+c)(x^a)(y^b)(z^c)
weighted-AM-GMだけど、入試問題で出されると答案書くのはシンドイな。
399:132人目の素数さん
17/08/05 22:22:51.97 BdLSvd9B.net
別にこのスレの参加者ではないが
面白い問題を見つけたので
平面上にA(p,q),B(r,s),C(t,u)とD(v,w)があるとき
(Dが△ABCの内部および周上)
⇔ ∃k, ∀(x,y)>0, (x^v)(y^w)≦k((x^p)(y^q)+(x^r)(y^s)+(x^t)(y^u)
出典:近大数コン2009-A4
400:132人目の素数さん
17/08/05 22:24:18.12 BdLSvd9B.net
うっかり上げてしまった
ガハハ
401:¥
17/08/06 00:03:17.52 +CYdGQny.net
¥
402:¥
17/08/06 00:03:37.50 +CYdGQny.net
¥
403:¥
17/08/06 00:03:57.17 +CYdGQny.net
¥
404:¥
17/08/06 00:04:15.55 +CYdGQny.net
¥
405:¥
17/08/06 00:04:34.48 +CYdGQny.net
¥
406:¥
17/08/06 00:04:54.19 +CYdGQny.net
¥
407:¥
17/08/06 00:05:14.68 +CYdGQny.net
¥
408:¥
17/08/06 00:05:33.25 +CYdGQny.net
¥
409:¥
17/08/06 00:05:52.81 +CYdGQny.net
¥
410:¥
17/08/06 00:06:14.31 +CYdGQny.net
¥
411:132人目の素数さん
17/08/06 09:42:51.79 toVHuNxr.net
>>388-389
指数祭りかな?
自作問題でおじゃるが、簡単すぎた。
定数 a>0 に対して b = a^a とおくとき、a^a、a^b、b^a、b^b の大小を比較せよ。
(^⌒⌒^)
| i i i i i| 不等式、作るよ!
| i i i i i|
(;`・ω・)っ-O・゚・⌒)
/ つ━ゝ,.゚__.,ノ))
_l从从从从l_
| ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄|
412:¥
17/08/06 10:15:43.68 +CYdGQny.net
☆☆☆馬鹿板は数学徒の脳を腐らせる悪い板であり、そやし廃止してナシにすべき。☆☆☆
¥
413:132人目の素数さん
17/08/06 12:55:32.43 pqWLs7wT.net
(1)
√(x+a) = A、√(x+b)= B、√(x+c)= C とおくと
(左辺)=(AA-BB)C +(BB-CC)A +(CC-AA)B =(A-B)(B-C)(C-A),
ヤパーリ 要る…
(2)
(2+aa)(2+bb)(2+cc)≧(2√2)(a+b)(c+c)(c+a)≧{(16√2)/9}(a+b+c)(ab+bc+ca),
等号は a=b=c=√2.
(3)
a = A^(3/2)、b = B^(3/2)、c = C^(3/2)とおく。
(左辺)=(ABC)^3 + A^3 + B^3 + C^3 +1 +1
≧ A^3 + B^3 + C^3 + 3ABC
= AB(A+B)+ BC(B+C)+ CA(C+A)+ F_1(A,B,C) ← Schur(n=1)
≧ 2{(AB)^(3/2)+(BC)^(3/2)+(CA)^(3/2)}
= 2(ab+bc+ca),
414:¥
17/08/06 14:59:24.36 +CYdGQny.net
¥
415:¥
17/08/06 14:59:42.73 +CYdGQny.net
¥
416:¥
17/08/06 15:00:00.45 +CYdGQny.net
¥
417:¥
17/08/06 15:00:19.27 +CYdGQny.net
¥
418:¥
17/08/06 15:00:34.88 +CYdGQny.net
¥
419:¥
17/08/06 15:00:51.55 +CYdGQny.net
¥
420:¥
17/08/06 15:01:08.73 +CYdGQny.net
¥
421:¥
17/08/06 15:01:25.24 +CYdGQny.net
¥
422:¥
17/08/06 15:01:43.36 +CYdGQny.net
¥
423:¥
17/08/06 15:02:01.70 +CYdGQny.net
¥
424:132人目の素数さん
17/08/07 14:18:42.38 8+FZkWXB.net
[不等式スレ 第7章 984] 出典 「平成24年 第1回 東大入試プレ(文科)」
> 実数 a,b,c,d が a+b+c+d=0, a^2+b^2+c^2+d^2=100 をみたすとき、
> a^3+b^3+c^3+d^3 のとりうる値の範囲を求めよ。
> (-1000/√3, 1000/√3)に一票
エレガントな解法か、エロイ解法あるかな?
425:132人目の素数さん
17/08/07 22:48:29.46 EtB15xZg.net
>>414
普通にやっただけだからつまらないと思うけど
EV-theorem から a=b=c のときに最大・最小となるのは明らか。これを念頭に変形する
d=-(a+b+c) を第 2 式に代入して (a+b)^2+(b+c)^2+(c+a)^2=100
よって |(a+b)(b+c)(c+a)|<=(100/3)^(3/2)
|a^3+b^3+c^3+d^3|
=|3(a+b)(b+c)(c+a)|
<=1000/sqrt(3)
一方 d=a とすると c=-(2a+b), (a+b)^2+2a^2=50 (よって-5<=a<=5) から
与式 = -6*a*(b+a)^2 = -6a(50-2a^2)
これは [-1000/sqrt(3), 1000/sqrt(3)] の任意の値を取りうる
426:132人目の素数さん
17/08/08 06:26:42.69 0ekMhM3z.net
>>414-415
「東大入試プレ」で検索したが出てこない
↓
そもそも東大入試プレは何か検索すると、代ゼミの模試らしい
↓
「東大入試プレ 代ゼミ」で検索すると、かなり近づいてきた気がする
URLリンク(www.yozemi.ac.jp)
↓
左上のweb構成を見て、さらに検索し、目的の物を発見
URLリンク(www.yozemi.ac.jp)
その模範解答では、p+q=x、pq=y とおいて、x, y の関数として考えているらしい。
出典情報は大事だね。 まさか見つかるとは思っても見なかった。
427:132人目の素数さん
17/08/09 08:03:24.35 A2I5YGTu.net
いつもと違う出題形式。 いろんな解法を考えていて、おかしくなったでござる。
『実数 a, b>0 が ab ≧ a+b+1 をみたすとき、ab の最小値を求めよ。』
について、以下の解法(a)、(b)、(c)を考える。
(a)、(b)のどこがおかしいのか?
(a)
ab ≧ a+b+1 ≧ 3*(a*b*1)^(1/3)、等号はa=b=1 かつab=a+b+1
∴ (ab)^3 ≧ 27ab
ab>0で割って、(ab)^2 ≧ 27
ab>0だから、ab ≧ 3√3
等号成立条件をみたすa, bがないから、ab > 3√3
(b)
ab ≧ a+b+1 ≧ 2√(ab) + 1、等号はa=b かつab=a+b+1
∴ab-1 ≧ 2√(ab)
∴(ab-1)^2 ≧ 4ab
∴(ab)^2 - 6ab - 1 ≧ 0
ab>0だから、0 < ab ≦3-2√2 または 3+2√2 ≦ab
(c)
a+b ≧ 2√(ab) ≧ 2√(a+b+1)、等号はa=b かつ ab=a+b+1
∴ (a+b)^2 ≧4(a+b+1)
∴ (a+b)^2 - 4(a+b) - 4 ≧0
∴ a+b>0 だから、a+b ≧ 2+2√2
∴ ab ≧ a+b+1 ≧ 3+2√2
abの最小値は、3+2√2 (a=b=1+√2)
428:132人目の素数さん
17/08/09 09:43:16.84 DWUU74oj.net
>>417
(a)
間違ってない
ただ等号が成立しない雑な不等式を用いてるから最後の結論もいい加減になっただけ
ab>3sqrt3 を満たすとは言ってるけどそのすべての範囲を取りうるとは言っていない
(b)
条件 ab>=1 を加えればいい
429:¥
17/08/09 10:29:08.78 WvFggA1P.net
★★★馬鹿板は悪い習慣であり、大脳が劣化します。なので早く止めましょう。★★★
¥
430:132人目の素数さん
17/08/09 13:30:53.39 A2I5YGTu.net
>>418
ありがとう。
脊髄反射でAM-GMを使って (a) のやり方でやって、アレレとなった。
結局、真面目に領域図示で片付けたんだが…。
431:¥
17/08/09 13:48:05.47 WvFggA1P.net
¥
432:¥
17/08/09 13:48:22.08 WvFggA1P.net
¥
433:¥
17/08/09 13:48:38.98 WvFggA1P.net
¥
434:¥
17/08/09 13:48:55.28 WvFggA1P.net
¥
435:¥
17/08/09 13:49:12.16 WvFggA1P.net
¥
436:¥
17/08/09 13:49:27.85 WvFggA1P.net
¥
437:¥
17/08/09 13:49:44.64 WvFggA1P.net
¥
438:¥
17/08/09 13:50:02.44 WvFggA1P.net
¥
439:¥
17/08/09 13:50:20.30 WvFggA1P.net
¥
440:¥
17/08/09 13:50:36.92 WvFggA1P.net
¥
441:132人目の素数さん
17/08/09 14:15:40.77 A2I5YGTu.net
荒れまくリング… ('A`)ヴォエァ!
442:132人目の素数さん
17/08/09 14:30:22.92 vWdGLnQX.net
>>388
(3)平方和で表わした。
(左辺)-(右辺) ={(abc)^2 -3GG +2}+{3(a+b+c -3G)GG + F_1(a,b,c)}/(a+b+c),
ここで、G =(abc)^
443:(1/3) (abc)^2 -3GG +2 = G^6 -3GG +2 = (GG+2)(GG-1)^2, (a+b+c)-3G =(a'+b'+c'){(a'-b')^2+(b'-c')^2+(c'-a')^2}/2, a'=a^(1/3), b'=b^(1/3), c'=c^(1/3), F_1(a,b,c) = a(a-b)(a-c) + b(b-c)(b-a) + c(c-a)(c-b) = {ab(aa-bb)^2 + bc(bb-cc)^2 + ca(cc-aa)^2}/{(a+b)(b+c)(c+a)} (4) (i) OB方向をz軸とし、 OAの天頂角を ∠AOB=α OCの天頂角を ∠BOC=γ とする。 cosβ = cos(∠COA) =(OC・OA)= cosα cosγ + sinα sinγ cosφ (φは方位角の差、0<φ<π) ∴ cos(α+γ)< cosβ < cos(α-γ), ∴ α+γ > β > |α-γ|
444:¥
17/08/09 14:39:57.19 WvFggA1P.net
¥
445:¥
17/08/09 14:40:12.01 WvFggA1P.net
¥
446:¥
17/08/09 14:40:26.47 WvFggA1P.net
¥
447:¥
17/08/09 14:40:42.21 WvFggA1P.net
¥
448:¥
17/08/09 14:40:57.06 WvFggA1P.net
¥
449:¥
17/08/09 14:41:32.51 WvFggA1P.net
¥
450:¥
17/08/09 14:41:48.49 WvFggA1P.net
¥
451:¥
17/08/09 14:42:05.45 WvFggA1P.net
¥
452:¥
17/08/09 14:42:21.92 WvFggA1P.net
¥
453:¥
17/08/09 14:42:38.72 WvFggA1P.net
¥
454:132人目の素数さん
17/08/09 14:51:36.23 vWdGLnQX.net
>>417
(d)
a,b>0 ゆえ
(√ab -1)^2 - 2 = ab -2√(ab) -1
= ab -(a+b+1) +(√a-√b)^2
≧ 0,
∴ √ab ≧ 1+√2,
455:¥
17/08/09 15:28:26.39 WvFggA1P.net
★★★馬鹿板は悪い習慣であり、大脳が劣化します。なので早く止めましょう。★★★
¥
456:132人目の素数さん
17/08/09 15:58:47.69 QFWbMnD6.net
(3)
a,b,cは任意の実数でよい
L-R=(a^2-1)(b^2-1)(c^2-1)+(ab-1)^2+(bc-1)^2+(ca-1)^2
よって絶対値が 1 以下のものが奇数個あるときのみ示せば十分
それを c とすると
(a^2-1)(b^2-1)(c^2-1)+(ab-1)^2 >= -(a^2-1)(b^2-1)+(ab-1)^2 = (a-b)^2 >= 0
457:¥
17/08/09 15:59:21.88 WvFggA1P.net
★★★馬鹿板は悪い習慣であり、大脳が劣化します。なので早く止めましょう。★★★
¥
458:132人目の素数さん
17/08/09 16:02:22.92 nXKHrols.net
>>388
>>432
の(3)ね
459:¥
17/08/09 16:53:02.33 WvFggA1P.net
¥
460:132人目の素数さん
17/08/09 17:01:42.00 A2I5YGTu.net
a, b, c >0 かつ abc=1 のとき、
(1) [memoには 2004 JMO とあるが、全然違っていた…]
c/(1+a) + b/(1+b) + a/(1+c) ≧ 3/2
(2) [memoには 1998 Ukraina とあるが、もう自信がない]
(1+ab)/(1+a) + (1+bc)/(1+b) + (1+ca)/(1+c) ≧ 3
(3) [疑問]
1/(1+a) + 1/(1+b) + 1/(1+c) ≧?
bc/(1+a) + ca/(1+b) + ab/(1+c) ≧?
(4) [1998 IMO shortlist.A3]
a^3/{(1+b)(1+c)} + b^3/{(1+c)(1+a)} + c^3/{(1+a)(1+b)} ≧ 3/4
-----------------------------------------------------
TeXで編集する際に、問題順を入れ替えたりしているうちに、
問題番号と出典番号がずれて、もはや修正のしようがない。
確認したくても、リンク先が消えているし。
URLリンク(mks.mff.cuni.cz)
| |
| ∥ ノノノノ -__
|| ∥ (゚∈゚ ) ─_____ ___
|∧ 从ノ (ミ_ (⌒\ヽ _ ___
( (≡ ̄ ̄ ̄ ̄三\⌒ノ ノ )
|(つWつ  ̄ ̄\ ⌒彡) ノ =_
| \つ つ \,___,ノノ
| | ) / / ≡=
| | / ノ __________
| | /ノ _─ (´⌒(´
| | ミ/= (´⌒(´⌒;;
| ''''""'''"'''"""''"""'''''"'"''''""''"''''"""''"'''""''"''"'''"''()
| / ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
461:132人目の素数さん
17/08/09 17:34:49.15 vWdGLnQX.net
>>388
(5) Hlawka の不等式 にござりまする。
(左辺)*(左辺 - 右辺)= Sq + Trig,
Sq = |a|^2 + |b|^2 + |c|^2 + |a+b+c|^2 - |a+b|^2 - |b+c|^2 - |c+a|^2,
Trig = (|b|+|c|-|b+c|) (|a|-|b+c|+|a+b+c|)
+ (|c|+|a|-|c+a|) (|b|-|c+a|+|a+b+c|)
+ (|a|+|b|-|a+b|) (|c|-|a+b|+|a+b+c|).
式の変形とはいえ、うまいものと感心するばかり。
Trig ≧0 は△不等式から出るが、Sq = 0 を出すには内積計算などが要る。(← Euclid性)
文献[3] 大関「不等式への招待」 p.33-34 例題8. >>2
462:132人目の素数さん
17/08/09 17:42:17.12 A2I5YGTu.net
>>450
ありがとう!
463:132人目の素数さん
17/08/09 17:49:46.39 A2I5YGTu.net
>>449 に付け足し。
a, b, c >0 かつ abc=1 のとき、
(4) [出典不明、元問題は"3乗和≧2乗和"を一般化した]
自然数nに対して、a^n + b^n + c^n ≧ a^(n-1) + b^(n-1) + c^(n-1)
(5) [出典不明]
b/a + c/b + a/b ≧ a+b+c ≧ √a + √b + √c
b/a + c/b + a/b ≧ 1/a + 1/b + 1/c ≧ √a + √b + √c
(6) [2016 東北大]
a^2 + b^2 + c^2 ≧ 1/a + 1/b + 1/c
(7) [疑問]
a^n + b^n + c^n ≧ b/a + c/b + a/b をみたす最小の n∈N はあるかな?
(8) [参考までに、これも出典のmemoがなくて困るが…]
a^3 + b^3 + c^3 + (ab)^3 + (bc)^3 + (ca)^3 ≧ b/a + c/b + a/b
--------------------------------------------------------------
同じ条件の不等式を整理していると、この問題と あの問題は繋がるのでは?
などと気になりはじめると、整理どころではなくなる。そうして未整理の不等式が貯まっていく。
(5)の2つの不等式の中辺の大小は定まらない。(過去スレでやったような希ガス…)
abc=1 に注意して、(a+b+c)-(ab+bc+ca) = (a-1)(b-1)(c-1)
a, b, cと1の大小で、正にも、0にも、負にもなる。
464:132人目の素数さん
17/08/09 17:50:44.87 A2I5YGTu.net
>>452
(8)の訂正。右辺は2倍ですた。
a^3 + b^3 + c^3 + (ab)^3 + (bc)^3 + (ca)^3 ≧ 2(b/a + c/b + a/b)
465:¥
17/08/09 18:14:30.50 WvFggA1P.net
★★★馬鹿板は悪い習慣であり、大脳が劣化します。なので早く止めましょう。★★★
¥
466:132人目の素数さん
17/08/09 18:51:30.33 sOQtPSi2.net
>>449
(1), (2) a=y/x … とおくだけ
(3)
Σ1/(1+a) = 1 + (a+b+c+1)/(ab+bc+ca+a+b+c+1) -> 1 (c=1/(ab), a->inf, b->inf)
Σbc/(1+a) = Σ1/(a+a^2) >= Σ(-3/4log(a)+1/2) = 3/4
(4) 相加相乗で終わり
467:132人目の素数さん
17/08/09 19:19:25.80 vWdGLnQX.net
>>388 (2)
(aa+2)(bb+2)(cc+2) ≧ 3(a+b+c)^2
Asia-Pacific MO-2004改
文献 [9] 佐藤(訳)、問題3.85改
(左辺)=(abc)^2 + 2(ab)^2 +2(bc)^2 +2(ca)^2 +4(aa+bb+cc) +8
=(abc)^2 +2(ab-1)^2 +2(bc-1)^2 +2(ca-1)^2 +3(a+b+c)^2 -2(ab+bc+ca) +2
={(abc)^2 +aa +bb +cc +2 -2(ab+bc+ca)}+2(ab-1)^2 +2(bc-1)^2 +2(ca-1)^2 +3(a+b+c)^2
≧ 3(a+b+c)^2,
※ (abc)^2 +aa +bb +cc +2 -2(ab+bc+ca)≧ 0
は >>388 (3)または練習問題1.90(i)を使う。
>>449 (4)
文献 [9] 佐藤(訳)、演習問題 1.120
468:¥
17/08/09 20:54:19.05 WvFggA1P.net
¥
469:¥
17/08/09 20:54:39.03 WvFggA1P.net
¥
470:¥
17/08/09 20:54:55.63 WvFggA1P.net
¥
471:¥
17/08/09 20:55:11.59 WvFggA1P.net
¥
472:¥
17/08/09 20:55:27.64 WvFggA1P.net
¥
473:¥
17/08/09 20:55:43.65 WvFggA1P.net
¥
474:¥
17/08/09 20:56:02.57 WvFggA1P.net
¥
475:¥
17/08/09 20:56:18.87 WvFggA1P.net
¥
476:¥
17/08/09 20:56:35.47 WvFggA1P.net
¥
477:¥
17/08/09 20:56:51.47 WvFggA1P.net
¥
478:132人目の素数さん
17/08/09 22:45:59.22 A2I5YGTu.net
不等式が少しだけ載っているというタレコミがあったので、事情徴収(立ち読み)してきた。
容疑者 : 佐久間一浩、『高校数学と大学数学の接点』、PP.18-30
(1) PP.18-24
三角形の辺長を a, b, c、面積をSとするとき、a^2 + b^2 + c^2 ≧ (4√3)S.
(2) PP.25-30
R ≧ 2r (球殻不等式)
(1)に対して、8通りの証明を与えていた。
(2)は d^2 = R^2 - 2Rr (茶ップル-オイラーの定理)を証明して片付けていた。
ここで d は外心と内心の距離。
∧,,∧
(`・ω・´) 8通りの証明だと? 詳しく聞こうか?
( )
 ̄ ̄Φ口U ̄ ̄\
_ _. \
_( ) ← 佐久間\
 ̄┏┳┓)
479:132人目の素数さん
17/08/09 22:47:06.98 A2I5YGTu.net
>>467
> 三角形の辺長を a, b, c、面積をSとするとき、a^2 + b^2 + c^2 ≧ (4√3)S.
(証明1)
ヘロンの公式を使って a, b, c だけの式にして、(左辺)^2 - (右辺)^2
(証明2)
面積公式と余弦定理を使って a, b, c だけの式にして、(左辺)^2 - (右辺)^2
(証明3)
b+c-a=A, c+a-b=B, a+b-c=C とおいて、AM-GM とヘロンの公式
480:。 (証明4) a^2 + b^2 + c^2 ≧ ab+bc+ca の右辺に正弦定理を用いてから、凸不等式。 (証明5) a^2 + b^2 + c^2 ≧ (4√3)S + (1/2){(a-b)^2 + (b-c)^2 + (c-a)^2} を証明。 (証明6) a^2 + b^2 + c^2 ≧ (4√3)S + (a-b)^2 + (b-c)^2 + (c-a)^2 を証明。 (証明7) 証明6の不等式を三角関数で証明。 (証明8) 座標平面上に、頂点を A(a/2,0)、B(-a/2,0)、C(s,t)、t>0 とおいて計算。 --------------------------------------------------------------------- [1] そもそもヘロンの公式は、面積公式と余弦定理から三角関数を消去して得られるものだから、 証明1と証明2は全く同じものである。証明6と証明7も一緒。つまり6通りの証明ですな。 [2] この不等式には、オノとかフランダースとか、なんか名前はついていないのかな? [3] 他に証明は無いのかな。証明3と実質同じだが、Ravi変換くらいしか思いつかない。 ヘロンの公式を行列式で表すと、S = (√D)/4。ここでDは以下の行列式。 |0 1 1 1 | |1 0 a^2 b^2| |1 a^2 0 c^2| |1 b^2 c^2 0 |
481:132人目の素数さん
17/08/09 22:48:59.09 DWUU74oj.net
>>388
>>456
相当な量の改良問題があった
for reals
[1] (a^2+1)(b^2+1)(c^2+1) >= (1+a+b)(1+b+c)(1+c+a)
[2] ((a^2+3)(b^2+3)(c^2+3))^2 >= 512(a+b)(b+c)(c+a)
for nonnegarives
[3] (a^2+2)(b^2+2)(c^2+2) >= 3(a+b+c)^2+(abc-1)^2
[4] (x^2+2)(y^2+2)(z^2+2) >= 4(x^2+y^2+z^2)+5(xy+yz+zx)+(xyz-1)^2
[5] (a^2+2)(b^2+2)(c^2+2) >= 4(a^2+b^2+c^2)+5(ab+bc+ca)+(abc(a-1)^2(b-1)^2(c-1)^2)^(1/3)
AOPS
[1], [2] : c6h588096p3481394
[3] : c6h4830p15309
[4], [5] : c6h581954p3438879
他にもいろいろ
482:132人目の素数さん
17/08/09 22:51:59.96 A2I5YGTu.net
>>469
キタ─wwヘ√レvv~(゚∀゚)─wwヘ√レvv~─ !! 素晴らしい!
483:132人目の素数さん
17/08/10 00:03:36.94 ZcMNVdrv.net
[出典不明]
実数 a,b,c,x,y,z が ax-2by+cz=0 かつ ac > b^2 > 0 をみたすとき、y^2 ≧ xz を示せ。
こういう掴みどころのない問題は、改造や類題を作りにくいので困る。 ('A`)ヴォエァ!
484:132人目の素数さん
17/08/10 01:44:43.71 DPXWgKrx.net
>>471
xz≦0 のときは明らか。
xz>0 のとき
4{bbyy -(ax)(cz)}≧(2by)^2 -(ax+cz)^2 = -(ac-2by+cz)(ac+2by+cz)= 0,
∴ yy ≧(ac/bb)xz ≧ xz,
485:132人目の素数さん
17/08/10 02:37:02.72 DPXWgKrx.net
>>467
(2)
△の3辺を切る円はその内接円より大きい、を認めよう。
△の各辺の中点を通る円を考える。
この円は半径R/2であるが、△の3辺を切る。
R/2 ≧ r
(清水多門氏による)
文献[3]、p.7-8 例題4 >>2
486:¥
17/08/10 02:40:57.40 JHmEReZW.net
¥
487:¥
17/08/10 02:41:14.29 JHmEReZW.net
¥
488:¥
17/08/10 02:41:29.35 JHmEReZW.net
¥
489:¥
17/08/10 02:41:43.79 JHmEReZW.net
¥
490:¥
17/08/10 02:41:59.14 JHmEReZW.net
¥
491:¥
17/08/10 02:42:15.31 JHmEReZW.net
¥
492:¥
17/08/10 02:42:31.29 JHmEReZW.net
¥
493:¥
17/08/10 02:42:46.34 JHmEReZW.net
¥
494:¥
17/08/10 02:43:01.62 JHmEReZW.net
¥
495:¥
17/08/10 02:43:27.08 JHmEReZW.net
¥
496:132人目の素数さん
17/08/10 02:47:00.98 ZcMNVdrv.net
>>414
> 実数 a,b,c,d が a+b+c+d=0, a^2+b^2+c^2+d^2=100 をみたすとき、
> a^3+b^3+c^3+d^3 のとりうる値の範囲を求めよ。
追加問題 : 同じ条件の下で、aのとりうる値の範囲を求めよ。
|
\ __ /
_ (m) _ピコーン
|ミ|
/___\
./ ≧ \
|:::: \ ./ |
|::::: (● (● | < 改造せずにはいられない!
ヽ::::... .ワ.....ノ (閃いたが、簡単過ぎる…)
人つゝ 人,,
Yノ人 ノ ノノゞ⌒~ゞ
ノ /ミ|\、 ノノ ( 彡
`⌒ .U~U`ヾ 丿
⌒~⌒
497:¥
17/08/10 02:48:50.76 JHmEReZW.net
¥
498:132人目の素数さん
17/08/10 02:58:19.02 DPXWgKrx.net
>>449 (4)
チェビシェフにより
(左辺)≧ a/{(1+b)(1+c)}+ b/{(1+c)(1+a)}+ c/{(1+a)(1+b)}
={a(1+a)+ b(1+b)+ c(1+c)}/{(1+a)(1+b)(1+c)}
≧(s+t)/(1+s+t+u),
≧ 3/4,
∵題意より u=abc=1 ゆえ s+t≧3{u^(1/3)+u^(2/3)}= 6,
499:132人目の素数さん
17/08/10 03:13:12.22 ZcMNVdrv.net
>>414
> 実数 a,b,c,d が a+b+c+d=0, a^2+b^2+c^2+d^2=100 をみたすとき、
> a^3+b^3+c^3+d^3 のとりうる値の範囲を求めよ。
>
> 追加問題 : 同じ条件の下で、aのとりうる値の範囲を求めよ。
さらに追加 : 同じ条件の下で、ab+bc+cd+da のとりうる値の範囲を求めよ。
/⌒\ っ /\
/'⌒'ヽ \ っ/\ |
(●.●) )/ |: |
>冊/ ./ |: /
/⌒ ミミ \ 〆
/ / |::|λ|
|√7ミ |::| ト、
|:/ V_ハ
/| i |
и .i N
λヘ、| i .NV
V\W
|
\ __ /
_ (m) _ピコーン
|ミ|
/___\
./ ≧ \
|:::: \ ./ |
|::::: (● (● | < なんか降りてきた!
ヽ::::... .ワ.....ノ 今夜は冴えてるぜ!
人つゝ 人,,
Yノ人 ノ ノノゞ⌒~ゞ
ノ /ミ|\、 ノノ ( 彡
`⌒ .U~U`ヾ 丿
⌒~⌒
500:¥
17/08/10 03:24:41.98 JHmEReZW.net
¥
501:¥
17/08/10 04:28:58.93 JHmEReZW.net
¥
502:¥
17/08/10 04:29:18.97 JHmEReZW.net
¥
503:¥
17/08/10 04:29:39.28 JHmEReZW.net
¥
504:¥
17/08/10 04:29:58.06 JHmEReZW.net
¥
505:¥
17/08/10 04:30:15.68 JHmEReZW.net
¥
506:¥
17/08/10 04:30:33.84 JHmEReZW.net
¥
507:¥
17/08/10 04:30:52.28 JHmEReZW.net
¥
508:¥
17/08/10 04:31:12.03 JHmEReZW.net
¥
509:¥
17/08/10 04:31:44.62 JHmEReZW.net
¥
510:132人目の素数さん
17/08/10 12:38:29.31 60raC5j+.net
>>452
(7) n>=3
a^2+b^2+c^2 と b/a+c/b+a/c の大小は定まらない
(8) Schur + AMGM
511:¥
17/08/10 13:07:16.05 JHmEReZW.net
¥
512:132人目の素数さん
17/08/10 13:59:34.75 DPXWgKrx.net
>>484
a=-(b+c+d)を代入して
aa = (-b-c-d)^2 ≦ 3(bb+cc+dd)= 3(100-aa),
aa ≦ 75,
|a| ≦ 5√3,
>>487
(a+c)(b+d)= -(a+c)^2 = -(b+d)^2 ≧ -(aa+cc) -(bb+dd) = -100,
-100 ≦ (a+c)(b+d)≦ 0,
等号成立は(a,b,c,d)=(5,-5,5,-5)(5,5,-5,-5)など。
513:¥
17/08/10 15:01:44.06 JHmEReZW.net
¥
514:¥
17/08/10 15:02:00.82 JHmEReZW.net
¥
515:¥
17/08/10 15:02:17.86 JHmEReZW.net
¥
516:¥
17/08/10 15:02:35.54 JHmEReZW.net
¥
517:¥
17/08/10 15:02:52.13 JHmEReZW.net
¥
518:¥
17/08/10 15:03:08.83 JHmEReZW.net
¥
519:¥
17/08/10 15:03:25.66 JHmEReZW.net
¥
520:¥
17/08/10 15:03:43.60 JHmEReZW.net
¥
521:¥
17/08/10 15:04:00.80 JHmEReZW.net
¥
522:¥
17/08/10 15:04:17.63 JHmEReZW.net
¥
523:132人目の素数さん
17/08/10 20:36:16.33 ZcMNVdrv.net
>>467-468
> 三角形の辺長を a, b, c、面積をSとするとき、a^2 + b^2 + c^2 ≧ (4√3)S.
>
> [2] この不等式には、オノとかフランダースとか、なんか名前はついていないのかな?
Weitzenbock's inequality と言うらしい。ヴァイツェンベックと発音するのかな?
URLリンク(en.wikipedia.org)
524:¥
17/08/10 21:00:27.34 JHmEReZW.net
¥
525:132人目の素数さん
17/08/10 21:41:35.40 ZcMNVdrv.net
Crux
URLリンク(cms.math.ca)
いつの間にかパスワード制になって読めなくなったでござる。
パスワード無しで読める最後の記事は v37n8 (2011年)。
URLリンク(cms.math.ca)
Problems
3690、3691、3694、3699
526:¥
17/08/10 21:57:11.66 JHmEReZW.net
★★★馬鹿板は悪い習慣であり、大脳が劣化します。なので早く止めましょう。★★★
¥
527:132人目の素数さん
17/08/10 21:57:26.65 ZcMNVdrv.net
>>389
これでござるな。
URLリンク(www.math.kindai.ac.jp)
528:¥
17/08/10 23:48:50.83 JHmEReZW.net
¥
529:¥
17/08/10 23:49:09.40 JHmEReZW.net
¥
530:¥
17/08/10 23:49:27.64 JHmEReZW.net
¥
531:¥
17/08/10 23:49:45.64 JHmEReZW.net
¥
532:¥
17/08/10 23:50:03.51 JHmEReZW.net
¥
533:¥
17/08/10 23:50:22.17 JHmEReZW.net
¥
534:¥
17/08/10 23:50:41.02 JHmEReZW.net
¥
535:¥
17/08/10 23:50:57.38 JHmEReZW.net
¥
536:¥
17/08/10 23:51:13.83 JHmEReZW.net
¥
537:¥
17/08/10 23:51:31.07 JHmEReZW.net
¥
538:132人目の素数さん
17/08/11 00:32:25.04 UlqqGaeP.net
ネタギレだな
興奮する問題が無い
539:132人目の素数さん
17/08/11 00:46:30.31 VAqorbPb.net
(俺の経験人数)>Σ(このスレの住人の経験人数)
を示せ
540:¥
17/08/11 00:58:40.57 ToUPXODc.net
♪♪♪もう良い子は寝る時間です。そやし馬鹿板は止めて、また明日にしましょう。♪♪♪
ケケケ¥
541:¥
17/08/11 06:12:48.74 ToUPXODc.net
¥
542:¥
17/08/11 06:13:04.97 ToUPXODc.net
¥
543:¥
17/08/11 06:13:20.84 ToUPXODc.net
¥
544:¥
17/08/11 06:13:36.78 ToUPXODc.net
¥
545:¥
17/08/11 06:13:51.86 ToUPXODc.net
¥
546:¥
17/08/11 06:14:08.31 ToUPXODc.net
¥
547:¥
17/08/11 06:14:24.27 ToUPXODc.net
¥
548:¥
17/08/11 06:14:39.62 ToUPXODc.net
¥
549:¥
17/08/11 06:14:55.88 ToUPXODc.net
¥
550:¥
17/08/11 06:15:11.17 ToUPXODc.net
¥
551:132人目の素数さん
17/08/11 12:57:10.89 OXujv9yn.net
>>467 (1)を改造...
三角形の辺長を a,b,c、面積をSとするとき、(1/3)(a+b+c)^2 ≧ (4√3)S.
(証明3)
b+c-a=A, c+a-b=B, a+b-c=C とおく。
(1/3)(a+b+c)^2
=(1/3)(A+B+C)^2
≧ √{3(A+B+C)ABC
552:} (← AM-GM) =(4√3)S, 三角形の辺長を a,b,c、面積をSとするとき、ab+bc+ca ≧ (4√3)S. (証明6) b+c-a=A, c+a-b=B, a+b-c=C とおく。 ab+bc+ca = aa+bb+cc -{(a-b)^2 +(b-c)^2 +(c-a)^2}/2 ≧ aa+bb+cc -(a-b)^2 -(b-c)^2 -(c-a)^2 = AB+BC+CA ≧ √{3(A+B+C)ABC} =(4√3)S,
553:¥
17/08/11 12:59:40.46 ToUPXODc.net
★★★馬鹿板は悪い習慣であり、大脳が劣化します。なので早く止めましょう。★★★
¥
554:132人目の素数さん
17/08/11 16:26:36.35 XzY0B0Bq.net
a, b, c >0 かつ abc=1 のとき、
(1) [AYIN 2012.09]
(a+b)/(ab+a+b) + (b+c)/(bc+b+c) + (c+a)/(ca+c+a) ≧ 2
(2) [1997 Romania]
(a^3+b^3)/(ab+a^2+b^2) + (b^3+c^3)/(bc+b^2+c^2) + (c^3+a^3)/(ca+c^2+a^2) ≧ 2
(3) [1996 IMO shortlist.A1]
ab/(ab+a^5+b^5) + bc/(bc+b^5+c^5) + ca/(ca+c^5+a^5) ≦ 1
----------------------------------------------------
[1] (3)だけ向きが逆。もしかして (1)(2)(3) すべて最大値と最小値があるかな?
[2] 分母が ab+a^n+b^n のタイプで、他に類題ないかな?
/⌒\ っ /\
/'⌒'ヽ \ っ/\ |
(●.●) )/ |: |
>冊/ ./ |: /
/⌒ ミミ \ 〆
/ / |::|λ| |
|√7ミ |::| ト、 |
|:/ V_ハ |
/| i | ∧|∧
и .i N / ヽ) きりがないでござる…
λヘ、| i .NV | | |
V\W ( 、 ∪
|| |
∪∪
555:132人目の素数さん
17/08/11 16:46:26.28 XzY0B0Bq.net
>>467、>>539
さらに改造。というか、コレクションに纏め済みでござった。
三角形の辺長 a, b, c、面積 S、外接円の半径 R、内接円の半径 r に対して、
9R^2 ≧ a^2 + b^2 + c^2 ≧ (1/3)(a+b+c)^2 ≧ ab+bc+ca ≧ 3(abc)^(2/3) ≧ (4√3)S ≧ 36r.
⊿ ○ ∇ 、___,、´`゙;~、 ';冫 ☆
┏ ━ゝヽ''/ ≧ \━〆A!゚━┓。
╋┓"〓┃ < ゝ\',冫。' |:::: \ ./ |゛△│´'´,.ゝ'┃. ●┃ ┃┃
┃┃_.━┛ヤ━━━|::::: (● (● |━━━━━ ━┛ ・ ・
∇ ┠─Σ- ヽ::::... .ワ.....ノ 冫 そ',´; ┨'゚,。
.。冫▽ < ⊂ ./⊃ 乙 ≧ ▽
。 ┃ Σ (⌒ゞ ,l, 、'' │ て く
┠─ム┼ ゝ,,ノ ノゝ. 、,, .┼ ァ Ζ┨ ミo''`
。、゚`。、 i/ レ' o。了 、'' × 个o
○ ┃ `、,~´+√ ▽ ',!ヽ.◇ o┃
┗〆━┷ Z,.' /┷━''o ヾo┷+\━┛,゛;
ヾ ⊿ '、´ ∇
556:132人目の素数さん
17/08/11 17:08:13.18 XzY0B0Bq.net
>>467 >>539 >>542
さらに行けそうだぜ! ヒャッハー!
URLリンク(forumgeom.fau.edu)
9abc/(a+b+c) ≧ (4√3)S が成り立つらしい (証明は未だ読んでいない)
AM-GMから直ちに >>542 とドッキングさせられるぜ! ヒャッハー!
9R^2 ≧ a^2 + b^2 + c^2 ≧ (1/3)(a+b+c)^2 ≧ ab+bc+ca ≧ 3(abc)^(2/3) ≧ 9abc/(a+b+c)≧ (4√3)S ≧ 36r.
_ ())二) )) 、,r:ニヽ いいぞ ベイべー!
@ニ===)二二ニニ)('A` )) 不等式を収集し証明する奴は 不等式ヲタだ!!
^ ̄" フ\''|ノ=ノ-( ) 不等式を改造し拡張する奴は よく訓練された不等式ヲタだ!!
_/ \_ L L ホント不等式はハァハァするぜ! フゥハハハーハァー
557:¥
17/08/11 17:28:47.81 ToUPXODc.net
¥
558:¥
17/08/11 17:29:04.30 ToUPXODc.net
¥
559:¥
17/08/11 17:29:20.83 ToUPXODc.net
¥
560:¥
17/08/11 17:29:36.61 ToUPXODc.net
¥
561:¥
17/08/11 17:29:52.50 ToUPXODc.net
¥
562:¥
17/08/11 17:30:07.38 ToUPXODc.net
¥
563:¥
17/08/11 17:30:22.15 ToUPXODc.net
¥
564:¥
17/08/11 17:30:56.58 ToUPXODc.net
¥
565:¥
17/08/11 17:31:12.23 ToUPXODc.net
¥
566:¥
17/08/11 17:31:29.05 ToUPXODc.net
¥
567:132人目の素数さん
17/08/11 18:20:48.72 OXujv9yn.net
>>467 (1)>>539 を再改造…
>>541
(2)
(aa-ab+bb)/(aa+ab+bb)≧ 1/3,など。
(左辺)≧ 2(a+b+c)/3 ≧ 2(abc)^(2/3)= 2,
(3)
ab +a^5 +b^5 = aabbc +a^5 +b^5 ≧ aabb(a+b+c)= ab(a+b+c)/c,
IMO-1996 予選
文献[9]佐藤、演習問題1.15
>>543
abc =(A+B)(B+C)(C+A)/8 ≧(A+B+C)(AB+BC+CA)/9,
∴ ab+bc+ca ≧ 9abc/(a+b+c)≧ AB+BC+CA
>>539 により成立。
きりがないでござるよ…
568:132人目の素数さん
17/08/11 18:50:48.93 XzY0B0Bq.net
>>554
むむむ、再改造とは 恐るべし不等式ヲタ…
List of triangle inequalities
URLリンク(en.wikipedia.org)
彳㍍” ,イ云” ,.ッ | ィ1 |l | 、 ,. '´
レ/ チ㌢ rf少 [> |||| || | 迅 /
rf fリイ {孖 _レ-ー、|__ト-、 什 ( む
lト {iヌ {iヌ _/´,.´ ,. .., 、 フ _ヽ、 ノ糸 _,) む
斗 弋z 弋z,. 〃_` /',ニ=ュ> lxニ∠ヽ|_ ァzソ ( む
も、 `マチtz, { G レ‐、ゝー"´=ゝ一'‐, L `┐
ミマ辷 ` =z.,,__ ! ,r〉 ,二_,.{,_,}二,,,..、 .} ゝ
` t述シtr、 {`-”し',. '"´`ゝv, ィ/´゛ヽレ' `つ
`ー≧= ‐ .,,, ト, || ゝ ひ フ / てソj |:| 〈 ⊂´ ̄ ̄
` 爻ミzz,, | | . || , '´ ̄ |` ̄''` i,| ,)r'"
`弋≧=ー' | || J ,._| .// /"
,/、. || 、_,,,.--、_, //
,.r' !、  ̄ ゝ....,,,,____,,,/,1
,,.. ‐'フ´ >`、「 0 C.〕、
,. < ``、、 /' ,.ヘ>========< \‐- .._
569:¥
17/08/11 19:51:33.31 ToUPXODc.net
¥
570:¥
17/08/11 19:51:49.80 ToUPXODc.net
¥
571:¥
17/08/11 19:52:21.89 ToUPXODc.net
¥
572:¥
17/08/11 19:52:37.32 ToUPXODc.net
¥
573:¥
17/08/11 19:52:54.05 ToUPXODc.net
¥
574:¥
17/08/11 19:53:10.75 ToUPXODc.net
¥
575:¥
17/08/11 19:53:26.68 ToUPXODc.net
¥
576:¥
17/08/11 19:53:42.49 ToUPXODc.net
¥
577:¥
17/08/11 19:53:58.68 ToUPXODc.net
¥
578:¥
17/08/11 19:54:14.33 ToUPXODc.net
¥
579:¥
17/08/11 19:54:30.09 ToUPXODc.net
¥
580:132人目の素数さん
17/08/12 00:51:27.72 WPvdvXKS.net
なんかこのスレきもいな
ただのキモオタじゃん
581:132人目の素数さん
17/08/12 00:51:30.41 rvCA1oPA.net
>>389 >>515
△ABC における重心座標を考える。
↑D = L・↑A + m・↑B + n・↑C, L+m+n=1,
(v,w)=((Lp+mr+nt)/(L+m+n),(Lq+ms+nu)/(L+m+n))
(Dが△ABCの内部または周上) ⇔ 0 ≦ L,m,n
∴ AM-GM により
x^v・y^w ≦{L(x^p)(y^q) + m(x^r)(y^s) + n(x^t)(y^u)}/(L+m+n)
≦ (x^p)(y^q) + (x^r)(y^s) + (x^t)(y^u),
(Dが△ABCの外部) ⇔ min{L,m,n}<0
さて、どうする?
582:¥
17/08/12 02:20:34.22 Ay3s6hqd.net
¥
583:¥
17/08/12 02:20:51.86 Ay3s6hqd.net
¥
584:¥
17/08/12 02:21:10.10 Ay3s6hqd.net
¥
585:¥
17/08/12 02:21:27.14 Ay3s6hqd.net
¥
586:¥
17/08/12 02:21:45.38 Ay3s6hqd.net
¥
587:¥
17/08/12 02:22:05.22 Ay3s6hqd.net
¥
588:¥
17/08/12 02:22:22.90 Ay3s6hqd.net
¥
589:¥
17/08/12 02:22:39.56 Ay3s6hqd.net
¥
590:¥
17/08/12 02:22:57.04 Ay3s6hqd.net
¥
591:¥
17/08/12 02:23:15.89 Ay3s6hqd.net
¥
592:132人目の素数さん
17/08/12 03:30:21.66 hiSFFC3j.net
不等式ではなくって、等式なんだけど、
>>467の本 : 佐久間一浩、『高校数学と大学数学の接点』
を立ち読みしてきたときに見つけた問題を。
Σ[n=1 to ∞] (15n^2 - 30πn^4 + 8π^2 n^6)*e^(-πn^2) = ?
あと、名前の付いた等式を一つ。(只
593:の式変形で出るので面白くはないが…) ヒルツェブルフの等式 : x/ tanh x = 2x/(e^(2x)-1) + x
594:132人目の素数さん
17/08/12 11:28:19.55 rvCA1oPA.net
>>388 (4)
(i) >>432
(ii) OA=OB=OC とし、Oから平面ABCに垂線OHを下し、z軸とする。
A,B,C の天頂角をθとおくと、OH =|OA|・cosθ,etc.
2平面 OAH と OBH のなす角(二面角)を ∠AHB = φとおく。
cos(∠AOB)=(OA・OB)/|OA||OB|=(cosθ)^2 +(sinθ)^2 cosφ ≧ cosφ,
∴ ∠AOB ≦ φ = ∠AHB,
循環的にたす。
595:132人目の素数さん
17/08/12 12:31:19.72 rvCA1oPA.net
>>579
0
L(x) = 1/tanh(x) - 1/x をランジュヴァン関数というらしい。
|x| << 1 で L(x)≒x/3
596:132人目の素数さん
17/08/13 16:43:33.64 /or+kDcE.net
>>541 (1)
(a+b)/(ab+a+b) = (a+b)c/{1+(a+b)c}= z/(1+z),
通分して
(1+x)(1+y)z +(1+x)y(1+z)+ x(1+y)(1+z)- 2(1+x)(1+y)(1+z)
= -2 -(x+y+z) +xyz,
= -2 -2(ab+bc+ca)+ abc(a+b)(b+c)(c+a)
={1 - (abc)^2}+(ab+bc+ca-3)+(ab+bc+ca){abc(a+b+c) -3}
≧ 0,
597:132人目の素数さん
17/08/14 03:30:28.48 DhVyRLdl.net
>>449 >>455
(2)
(1+ab)/(1+a)= (1+c)/{c(1+a)},etc.
AM-GM する。
>>455 とほとんど同じだ....
(3)
1/(1+a)+ 1/(1+b)+ 1/(1+c)
≧ 1/(1+a+ab)+ 1/(1+b+bc)+ 1/(1+c+ca)
= x/(x+y+z)+ y/(y+z+x)+ z/(z+x+y)
= 1,
bc/(1+a) + ca/(1+b) + ab/(1+c) ≧ 3/2,
通分して
bc(1+b)(1+c)+ ca(1+c)(1+a)+ ab(1+a)(1+b)-(3/2)(1+a)(1+b)(1+c)
= t +(st-3u)+(tt-2su)-(3/2)(1+s+t+u)
={(s-3)t + s(t-3)}/6 +(2s+3)(u-1)/2 + 2(st-9u)/3 +(tt-3su)
={(s-3)t + s(t-3)}/6 +(2s+3)(u-1)/2
≧0, (← s≧3、t≧3、u=1)
598:132人目の素数さん
17/08/14 14:19:59.12 2wTFMFcz.net
>>543-544
> 9R^2 ≧ a^2 + b^2 + c^2 ≧ (1/3)(a+b+c)^2 ≧ ab+bc+ca ≧ 3(abc)^(2/3) ≧ 9abc/(a+b+c)≧ (4√3)S ≧ 36r.
書き直すと
(√3)R ≧ (a^2+b^2+c^2)/3 ≧ AM ≧ √{(ab+bc+ca)/3} ≧ GM ≧ √|3abc/(a+b+c)} ≧ 2√(S/√3) ≧ (2√3)r.
>>544より、√|3abc/(a+b+c)} ≧ √|(AB+BC+CA)/3}.
ところで、(ab+bc+ca)^2 - 3abc(a+b+c) ≧ 0 より、√|3abc/(a+b+c)} ≧ HM.
そこで気になるのは、2√(S/√3)、HM、√|(AB+BC+CA)/3} の大小だけど、定まるかな?
/⌒ヽ
/⌒ ・ >
E ̄U) ε | きりがないでござる
E ̄∩) ・ >
゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛゛
599:132人目の素数さん
17/08/14 16:40:29.61 2wTFMFcz.net
数学文化という雑誌に不等式の特集があるというタレ込みがあったので買ってきた。未だ目を通していない。
600:132人目の素数さん
17/08/14 21:52:11.78 DhVyRLdl.net
>>449
(3)下
チェビシェフで
(左辺)= 1/{a(1+a)}+ 1/{b(1+b)}+ 1/{c(1+c)}
≧ 1/{a(1+b)}+ 1/{b(1+c)}+ 1/{c(1+a)}
よって、次の問題に帰着する。
〔問題3.93〕
1/{a(1+b)}+ 1/{b(1+c)}+ 1/{c(1+a)}≧ 3/(1+abc),
バルカンMO-2006
文献[9] 佐藤(訳)、問題3.93
左辺に 1+abc を掛ける。
(1+abc)/{a(1+b)}= (1+a)/{a(1+b)}-1 + b(1+c)/(1+b),etc.
巡回的に AM-GM すると
(1+abc)(左辺)≧ 3(1/G -1 +G)
= 3(1-G+GG)/G
= 3(1+GGG)/{G(1+G)}.
∴ (左辺)≧ 3/{G(1+G)},
ここに G=(abc)^(1/3)
601:132人目の素数さん
17/08/15 00:00:45.18 CDzXTDus.net
>>584
(AB+BC+CA)/3 ≧ √{(A+B+C)ABC/3} =(4/√3)S, >>554
(HM)^2 ≧(4/√3)S
にて御座候。
HM と √{(AB+BC+CA)/3}の大小は不定と思われ...
き、きりがねぇ。。。
602:132人目の素数さん
17/08/15 11:55:24.24 MRdTx6vq.net
>>587
> (HM)^2 ≧(4/√3)S
これがうまく証明できませぬ
603:…
604:132人目の素数さん
17/08/15 11:56:07.50 MRdTx6vq.net
>>584-585より、
(√3)R ≧ (a^2+b^2+c^2)/3 ≧ AM ≧ √{(ab+bc+ca)/3} ≧ GM ≧ √|3abc/(a+b+c)}≧ HM ≧ 2√(S/√3) ≧ (2√3)r
ところで、三角形の辺長a,b,cに対して、2(ab+bc+ca) > (1/2)(a+b+c)^2 > a^2+b^2+c^2 だから、
{√2(ab+bc+ca)}/3 > (a+b+c)/(3√2) > (a^2+b^2+c^2)/3
合体させて、
{√2(ab+bc+ca)}/3 > (a+b+c)/(3√2) > (a^2+b^2+c^2)/3 ≧ AM ≧ √{(ab+bc+ca)/3} ≧ GM ≧ √|3abc/(a+b+c)}≧ HM ≧ 2√(S/√3) ≧ (2√3)r
さて、(√3)R はどこに入るのだろう?
('A`) 出口が見えないでござる
ノ ノ)_
605:132人目の素数さん
17/08/15 12:37:59.27 MRdTx6vq.net
>>589
> >>584-585より、
> (√3)R ≧ (a^2+b^2+c^2)/3 ≧ AM ≧ √{(ab+bc+ca)/3} ≧ GM ≧ √|3abc/(a+b+c)}≧ HM ≧ 2√(S/√3) ≧ (2√3)r
>
> ところで、三角形の辺長a,b,cに対して、2(ab+bc+ca) > (1/2)(a+b+c)^2 > a^2+b^2+c^2 だから、
GMの左側から合体させたら、
√{(ab+bc+ca)/3} > (a+b+c)/(2√3) > √|(a^2+b^2+c^2)/6} ≧ GM/(√2)
√{(ab+bc+ca)/3} ≧ GM ≧ √|3abc/(a+b+c)}≧ HM ≧ 2√(S/√3) ≧ (2√3)r
この2つは合体は無理そうかな。上側はGMより小さくなってるようだし…
606:132人目の素数さん
17/08/15 13:03:49.64 CDzXTDus.net
>>589
{√2(ab+bc+ca)/3}>(a+b+c)/√6 > √{(aa+bb+cc)/3}≧ AM
>>590
正△でも等号不成立なので、無理そうでござる。
607:132人目の素数さん
17/08/16 07:17:47.30 QnvYtidY.net
>>588
(HM)^2 ≧(4/√3)S
⇔ (3√3)(abc)^2 ≧ 4(ab+bc+ca)^2 √{s(s-a)(s-b)(s-c)}
⇔ (3√3) sin A sin B sin C ≧ 2 (sin A sin B + sin B sin C + sin C sin A)^2
この証明は難しいのでは?
a, b, c で表しても、sin で表してもややこしい。
レムスで削り落としても、まだ複雑な形でござる…
Lehmu's inequality : abc ≧ (s-a)(s-b)(s-c)
, / ,
, / / , / ,
/ '^メ-' ─/- 、 / ,
∠r _,゛_ / , ヽ/__/ モウ ダメポ…
''ヽ'_・.ノ` ' r/、 ヘ /‐’
./ " j 厂゙j | レ_`> j__ /
' .:‘::'ニ‘.:‐'´─゙.:´一’
608:132人目の素数さん
17/08/16 08:03:22.63 QnvYtidY.net
>>592
左辺の係数間違ごうとる
(HM)^2 ≧(4/√3)S
⇔ (9√3)(abc)^2 ≧ 4(ab+bc+ca)^2 √{s(s-a)(s-b)(s-c)}
⇔ (9√3) sin A sin B sin C ≧ 2 (sin A sin B + sin B sin C + sin C sin A)^2
609:132人目の素数さん
17/08/16 13:54:15.29 QnvYtidY.net
>>592
(HM)^2 ≧(4/√3)S ⇔ (x+y+z)/3 ≧ (xyz)^(1/3)
ラビで一発だった。
610:132人目の素数さん
17/08/16 14:18:02.07 QnvYtidY.net
>>594
いや別の不等式の話でした。
ごめん、あれこれ弄っていて混乱していました。
611:132人目の素数さん
17/08/18 01:02:25.04 90S02hzN.net
>>588-595
HM^2 と (4/√3)S の大小
1辺だけが短い楔状△の場合は不成立のようでござる。
手間取らせて、すまぬ。
612:132人目の素数さん
17/08/18 11:06:43.92 WHydeLcz.net
>>596
さんくす。(a,b,c)=(1/3,1,1)で、HMの方が小さくなりますね。
[疑問] HM ≧ (2/√3)r は成り立つか?
b=c=1、0<a<2でWolfram先生にグラフを書かせたら、0以上っぽいので、基本対称式で表すと、
(HM^2 - 12r)/3 の分子
= 3su^2+s^3t^2-4st^3+8t^2u
= (s^2-3t)st^2 - (t^2-3su)u
= 正 - 正
で、この方法では失敗でござった。
613:132人目の素数さん
17/08/18 12:33:10.09 WHydeLcz.net
>>597
ちがった。最後は
(s^3t^2-4st^3+9t^2u) - (t^2-3su)u
614:132人目の素数さん
17/08/18 17:50:32.42 WHydeLcz.net
>>449、>>583、>>586
> a, b, c >0 かつ abc=1 のとき、bc/(1+a) + ca/(1+b) + ab/(1+c) ≧ 3/2
>>586
> 1/{a(1+b)}+ 1/{b(1+c)}+ 1/{c(1+a)}≧ 3/(1+abc),
>
> バルカンMO-2006、文献[9] 佐藤(訳)、問題3.93
似たような不等式を見つけた。
[IMO 1995 第2問] URLリンク(www.cs.cornell.edu)
1/(a^3*(b+c)) + 1/(b^3*(c+a)) + 1/(c^3*(a+b)) ≧ 3/2.
615:132人目の素数さん
17/08/18 18:07:26.70 WHydeLcz.net
>>449、>>455、>>583
a, b, c >0 かつ abc=1 のとき、3 > 1/(1+a)+ 1/(1+b)+ 1/(1+c) > 1
上限を厳しく評価するには、どういう考え方でやればいいんでせうか?
616:132人目の素数さん
17/08/18 22:17:20.07 /k+bKW+I.net
>>600
f(x)=1/(1+e^x)
x+y+z=0 なる実数 x, y, z に対して f(x)+f(y)+f(z) の上限を調べればよい
f は x<=0 で狭義凸だから LCF から y=x, z=-2x のときの上限を調べれよばよい
sup 2f(x)+f(-2x) = 2
よって上限は 2
617:132人目の素数さん
17/08/19 03:06:30.81 HQ7H9Ohy.net
>>599
x=1/a、y=1/b、z=1/c とおくと、xyz=1
S = xx/(y+z)+ yy/(z+x)+ zz/(x+y)
≧ (x+y+z)^2 /{(y+z)+(z+x)+(x+y)} (←コーシー)
=(x+y+z)/2
≧3/2,
文献[9] 佐藤(訳)例1.4.9
>>600
a,b,… のうち最小のものをmとおきます。(m≦1)
1より大きい2要素 p,q があったときは
(p, q)→(m, pq/m)と置き換えてみます。
このとき相乗平均は変わらず、
(m + pq/m)-(p+q)= (p-m)(q-m)/m ≧ 0 ゆえ左辺は
1/(1+m)+ 1/(1+pq/m)- 1/(1+p)- 1/(1+q)
= (2+m+pq/m)/{(1+m)(1+pq/m)}-(2+p+q)/{(1+p)(1+q)}
=(2+m+pq/m)/{1+(m+pq/m)+pq}-(2+p+q)/{1+(p+q)+pq}
= -(pq-1)/{1+(m+pq/m)+pq}+(pq-1)/{1+(p+q)+pq}
≧0
増大します。
618:132人目の素数さん
17/08/19 03:14:58.76 Q+nr/ATk.net
LCF、RCF、LCRCF、SIP、EV、AC(UMV)、GI、GC、SMV…。さっぱり
619:132人目の素数さん
17/08/19 04:32:39.26 Q+nr/ATk.net
>>4 に追加。
Vasile Cirtoaje
URLリンク(ac.upg-ploiesti.ro)
柳田五夫、初等的な不等式Ⅲほか
URLリンク(izumi-math.jp)
620:132人目の素数さん
17/08/19 04:33:53.44 Q+nr/ATk.net
>>601-602
ありがとうございまする。
621:132人目の素数さん
17/08/19 05:22:53.63 Q+nr/ATk.net
Arithmetic Compensation Theorem (AC-Theorem)
Equal Variable Theorem (EV-Theorem)
Half Convex Function Theorem (HCF-Theorem)
Left Concave Function Theorem (LCF-Theorem)
Right Convex Function theorem (RCF-Theorem)
Left Convex-Right Concave Function Theorem (LCRCF-Theorem)
Single Inflection Point Theorem (SIP-Theorem)
Strong Mixing Variables Theorem (SMV-Theorem)
GC-Theorem (文献[8] 安藤 P.197)は何の略?
622:132人目の素数さん
17/08/19 10:17:54.83 F2dH2OvX.net
>>606
AC が arithmetic なんだから GC はgeometric でしょ...
623:132人目の素数さん
17/08/19 13:16:25.17 HQ7H9Ohy.net
>>597 >>598
s^3 -4st +9u = a(a-b)(a-c)+ b(b-c)(b-a)+ c(c-a)(c-b),
tt-3su = bc(a-b)(a-c)+ ca(b-c)(b-a)+ ab(c-a)(c-b),
より
(s^3 -4st +9u)tt - (tt-3su)u = P(a-b)(a-c)+ Q(b-c)(b-a)+ R(c-a)(c-b),
ここに
P=a(tt-bbcc),Q=b(tt-ccaa),R=c(tt-aabb),
P,Q,R≧0 かつ(P,Q,R)(a,b,c)は同順序なので Schurの拡張で成立..
624:132人目の素数さん
17/08/19 14:37:54.57 Q+nr/ATk.net
>>608
Schurの拡張について詳しく教えてください。
f : R→(0,∞) が単調増加 or 単調減少のとき、a, b, c∈R に対して、
f(a)(a-b)(a-c) + f(b)(b-c)(b-a) + f(c)(c-a)(c-b) ≧0
というのは知っているけど、この場合は f(x) が f(a,b,c)の3変数関数で、
同順序ならokってのが、ピンと来ない…
625:132人目の素数さん
17/08/19 15:39:17.29 Q+nr/ATk.net
>>600-602
> a,b,c>0, abc=1のとき、1 < 1/(1+a)+ 1/(1+b)+ 1/(1+c) < 2
>>583の真似をして上限を出してみたなり。 ( ゚∀゚) ウヒョッ!
1/(1+a)+ 1/(1+b)+ 1/(1+c)
= 1 + (1-ab)/(1+a+b+ab) + 1/(1+c)
< 1 + 1/(1+ab) + 1/(1+c)
= 1 + c/(1+c) + 1/(1+c)
= 2
626:132人目の素数さん
17/08/19 16:13:06.10 Qk9aUlzH.net
>>610
>>583
その解き方で本当に上限下限って言えるの?
627:132人目の素数さん
17/08/19 16:34:50.44 Q+nr/ATk.net
つまり、不等式を証明するだけなら、そのやり方でよいが、上限、下限であることを言うには、
a, b → +0 や a.,b → ∞ を調べて、限界値であることを確認しろってことかな?
628:132人目の素数さん
17/08/19 17:26:48.38 Qk9aUlzH.net
うん
でもその解き方でもa,b->0考えれば最適であることは言えるかもね
629:132人目の素数さん
17/08/19 17:44:45.38 Q+nr/ATk.net
>>449
(3)下を、Jensen + AMGM で。
f(x) = 1/(a+a^2) は下に凸だから、
左辺
= f(a) + f(b) + f(c)
≧ 3*f( (a+b+c)/3 )
≧ 3*f( (abc)^(1/3) )
= 3*f(1)
= 3/2
630:132人目の素数さん
17/08/19 18:43:45.36 Qk9aUlzH.net
>>614
f は単調増加じゃないから f( (a+b+c)/3 ) >= 3*f( (abc)^(1/3) ) は成り立たない
むしろ逆の不等号が成り立つ
631:132人目の素数さん
17/08/19 20:10:08.88 Q+nr/ATk.net
たしかに…。うっかりしていました。
632:132人目の素数さん
17/08/19 20:33:36.53 C7tE2SmP.net
不等式を極めるとなんかいいことがある?
633:¥
17/08/19 20:35:11.56 LB3Hl+jp.net
¥
634:¥
17/08/19 20:35:29.68 LB3Hl+jp.net
¥
635:¥
17/08/19 20:35:47.84 LB3Hl+jp.net
¥
636:¥
17/08/19 20:36:05.26 LB3Hl+jp.net
¥
637:¥
17/08/19 20:36:22.91 LB3Hl+jp.net
¥
638:¥
17/08/19 20:36:41.03 LB3Hl+jp.net
¥
639:¥
17/08/19 20:36:58.29 LB3Hl+jp.net
¥
640:¥
17/08/19 20:37:14.92 LB3Hl+jp.net
¥
641:¥
17/08/19 20:37:35.02 LB3Hl+jp.net
¥
642:¥
17/08/19 20:38:02.15 LB3Hl+jp.net
¥
643:132人目の素数さん
17/08/19 22:28:51.70 HQ7H9Ohy.net
>>597 >>598
a,b,c が△の辺長の場合は Ravi変換で簡単でござるよ。 >>594
b+c-a=A, c+a-b=B, a+b-c=C, a+b+c=A+B+C.
HM = 3abc/(ab+bc+ca)
=(3/2)(A+B)(B+C)(C+A)/{(A+B+C)^2 +(AB+BC+CA)}
≧(4/3)(A+B+C)(AB+BC+CA)/{(4/3)(A+B+C)^2}
=(AB+BC+CA)/(A+B+C)
≧(4√3)S/(a+b+c)
=(2√3)r,
したがって a,b,c>0 で成立するかがミソのようでござる… >>608
644:¥
17/08/20 03:18:58.50 vRIJh8/a.net
¥
645:¥
17/08/20 03:19:14.32 vRIJh8/a.net
¥
646:¥
17/08/20 03:19:29.20 vRIJh8/a.net
¥
647:¥
17/08/20 03:20:01.74 vRIJh8/a.net
¥
648:¥
17/08/20 03:20:18.61 vRIJh8/a.net
¥
649:¥
17/08/20 03:20:35.65 vRIJh8/a.net
¥
650:¥
17/08/20 03:20:50.79 vRIJh8/a.net
¥
651:¥
17/08/20 03:21:13.19 vRIJh8/a.net
¥
652:¥
17/08/20 03:21:29.13 vRIJh8/a.net
¥
653:¥
17/08/20 03:21:44.12 vRIJh8/a.net
¥
654:132人目の素数さん
17/08/20 11:39:21.71 XEX21MRP.net
>>628
かたじけない。その証明が難しいので、もう少し時間を。
655:132人目の素数さん
17/08/20 11:40:27.25 XEX21MRP.net
疑問でござる。
(1)
a, b, c >0 の相乗平均を G とおくとき、a/(b+G) + b/(c+G) + c/(a+G) ≧ 3/2 は成り立つか?
(2)
上式で、右辺の定数をGを含む式に変えられないか? たとえば、3/(1+G) みたいな感じで。
(3)
a, b, c >0、s = a+b+c、t = ab+bc+ca、u = abc に対して、s^3u - t^3 ≧0 は成り立つか?
656:132人目の素数さん
17/08/20 12:03:13.01 XEX21MRP.net
>>640
(3)は(a,b,c) = (1,1,2), (2,2,1) で正負になった。すまぬすまぬ…。
657:¥
17/08/20 14:02:17.03 vRIJh8/a.net
¥
658:¥
17/08/20 14:02:34.90 vRIJh8/a.net
¥
659:¥
17/08/20 14:02:51.19 vRIJh8/a.net
¥
660:¥
17/08/20 14:03:09.02 vRIJh8/a.net
¥
661:¥
17/08/20 14:03:26.90 vRIJh8/a.net
¥
662:¥
17/08/20 14:03:44.11 vRIJh8/a.net
¥
663:¥
17/08/20 14:03:59.91 vRIJh8/a.net
¥
664:¥
17/08/20 14:04:19.34 vRIJh8/a.net
¥
665:¥
17/08/20 14:04:36.64 vRIJh8/a.net
¥
666:¥
17/08/20 14:04:54.14 vRIJh8/a.net
¥
667:132人目の素数さん
17/08/20 18:47:22.79 XEX21MRP.net
>>628
ようやく理解。ところでRavi変換は (b+c-a)/2 = x、… なのでは?
基本対称式を使って、力任せに証明してみた。
a, b, c の基本対称式を s, t, u とおくと、
HM^2 - (2√3*r)^2 = 3{3s(st-u)^2 - 4u(s^2+t)^2}/{s(s^2+t)^2}
分子 = u(s^2t+3su-4t^2) + s^2(st^2-4s^2u+3tu) + 2s^2t(st-9u) ≧0
週末が
668:始まったと思ったら、もう終わっていたでござる… ('A`)
669:132人目の素数さん
17/08/20 18:48:49.02 XEX21MRP.net
>>652
正確には、分子じゃなくて、分子の中括弧の中身。
670:132人目の素数さん
17/08/20 18:56:12.70 XEX21MRP.net
>>652
何度もすまぬ。
Ravi変換 (b+c-a)/2 = x、…をしてから、x, y, z の基本対称式 s, t, u を使ったのでござった。
671:¥
17/08/20 22:07:16.76 vRIJh8/a.net
¥
672:¥
17/08/20 22:07:34.08 vRIJh8/a.net
¥
673:¥
17/08/20 22:07:52.31 vRIJh8/a.net
¥
674:¥
17/08/20 22:08:09.73 vRIJh8/a.net
¥
675:¥
17/08/20 22:08:27.26 vRIJh8/a.net
¥
676:¥
17/08/20 22:08:43.22 vRIJh8/a.net
¥
677:¥
17/08/20 22:09:00.84 vRIJh8/a.net
¥
678:¥
17/08/20 22:09:20.13 vRIJh8/a.net
¥
679:¥
17/08/20 22:09:38.63 vRIJh8/a.net
¥
680:¥
17/08/20 22:09:56.51 vRIJh8/a.net
¥
681:132人目の素数さん
17/08/20 22:50:23.44 mA3fdDEU.net
>>609
〔Schur 不等式の拡張〕
P,Q,R≧0 かつ(P,Q,R)(a,b,c)が同順または逆順ならば
P(a-b)(a-c)+ Q(b-c)(b-a)+ R(c-a)(c-b)≧ 0.
(略証)
bはa,cの中間にあるとしてよい。
(a-b)(b-c)≧ 0
題意より、P,Q,R≧0 かつ QはP,Rの中間にあるから、
P-Q+R ≧0
これらより、
P(a-b)(a-c)+ Q(b-c)(b-a)+ R(c-a)(c-b)
= P(a-b)^2 +(P-Q+R)(a-b)(b-c)+ R(b-c)^2
≧ 0, (終)
いろいろな拡張があり、まとめて Vornicu-Schur 不等式と云うらしい。
詳しくは、ニコニコ大百科の「シューアの不等式」の項を参照
>>640
(1) >>449(1)と同じでつ。
(2)同次式ゆえ、定数でつ。
>>654
それなら、>>652 は >>628 と同じでつね。
682:¥
17/08/20 23:01:59.99 vRIJh8/a.net
¥
683:132人目の素数さん
17/08/20 23:03:56.11 mA3fdDEU.net
>>617
専門バカになるでござる。
(ただし、専門を持たぬ只のバカよりは、すこーしマシである。)
684:132人目の素数さん
17/08/21 09:09:30.43 QiJqP8rB.net
>>628
a,b,c が△の辺長でない場合も簡単でござるよ。
A+B=2c≧0,B+C=2a≧0,C+A=2b≧0,
∴ A,B,Cのうち負となるのは1つだけ。
∴ HM^2 ≧ 0 ≧ 3ABC/(A+B+C),
685:132人目の素数さん
17/08/21 17:53:20.03 8ztbkIZ8.net
a, b, c >0 かつ abc≧1 のとき、
(1) [2004 ウクライナ、 文献 [9] 佐藤(訳)P.139]
a^3 + b^3 + c^3 ≧ ab+bc+ca
(2) [2006.3 エレ解、一松信]
a^2b + b^2c + c^2a ≧ ab+bc+ca
(3) [疑問]
上の左辺 a^3 + b^3 + c^3 と a^2b + b^2c + c^2a の大小は定まるのか?
巡回不等式に有効な手段って何? 真ん中の数を固定して場合分けくらいかな?
686:132人目の素数さん
17/08/21 22:19:47.87 QiJqP8rB.net
>>669
(abc)^(1/3) = G とおき、AM-GM する。
(1)
a^3+a^3+b^3 -3aab = (2a+b)(a-b)^2 ≧ 0
ゆえ、(2)に帰着する。
(2) aab+aab+bbc ≧ 3aG,
巡回的にたす。
(3) Muirheadの不等式
687:132人目の素数さん
17/08/21 22:26:23.89 QiJqP8rB.net
>>669
>>670 の訂正
(2) aab + aab + bbc ≧ 3abG
でござった。
(3) 非対称のときは微妙な場合もあるが、この場合は成立つでござる。
688:132人目の素数さん
17/08/21 22:55:53.49 qV/a4a+5.net
>>670
(3)muilheadで出来ると?
689:132人目の素数さん
17/08/22 00:50:18.83 fGEhoquB.net
>>2 安藤 [8] に著者のHPのリンクを追加 (まとめwikiは更新済み)
URLリンク(www.math.s.chiba-u.ac.jp) (著者のページに正誤表+補遺)
Muirhead's inequality は難しくて、>>1のまとめwikiを見たけど挫折。
その後、>>2 安藤 [8] PP.11-14を読んで、なんとか証明は辿れたけど、
簡単な例を作るなどで練習していないから、全く使いこなせない。 ← 今ココ
今が勉強するときなのかもしれないなあ。
( ゚д゚ ) ガタッ
.r ヾ
__l_l / ̄ ̄ ̄
690:/_ \/ /
691:132人目の素数さん
17/08/22 00:57:31.85 fGEhoquB.net
古いmemoを見つけたので、紛失する前に書き込んでおく。
証明は簡単だけど、見た目がよかったので。
〔出典不明〕
A(a,b) = (a+b)/2、G(a,b) = √(ab)、A(a,b,c) = (a+b+c)/3 などと書くことにする。
正の数 a, b, c, d に対して、
A(a,b,c,d) ≧ G(A(a,b,c),A(b,c,d),A(c,d,a),A(d,a,b)) ≧ G(A(a,b).A(a,c).A(a,d).A(b,c).A(b,d).A(c,d).) ≧ G(a,b,c,d)
692:132人目の素数さん
17/08/22 13:46:51.51 yCSUoaY7.net
>>674
[第6章.151-159]の辺りにござる。
G(A(a,b,c), A(b,c,d), A(c,d,a), A(d,a,b))^4
= (a+b+c)(b+c+d)(c+d+a)(d+a+b)/81
= (sst -su +v)/81,
G(A(a,b), A(a,c), A(a,d), A(b,c), A(b,d), A(c,d))^6
= (a+b)(a+c)(a+d)(b+c)(b+d)(c+d)/64
= (stu -ssv -uu)/64,
A(ab, ac, ad, bc, bd, cd)
= (ab+ac+ad+bc+bd+cd)/6
= t/6,
A(abc, bcd, cda, dab)
= (abc+bcd+cda+dab)/4
= u/4,
693:132人目の素数さん
17/08/22 15:23:36.14 fGEhoquB.net
>>669(3)
(a^2, b^2, c^2) と (a,b,c) は大小の順が同じだから、
『同順序積の和 ≧ 乱順序積の和 ≧ 逆順除籍の和』 で、
a^3 + b^3 + c^3 ≧ a^2b + b^2c + c^2a
で問題ない蟹?
694:132人目の素数さん
17/08/22 18:38:27.52 fGEhoquB.net
(1) [1999 Russia]
a, b, c >0 に対して、1 + 3/(ab+bc+ca) ≧ 6/(a+b+c)
(2) [1999 Russia]
a, b, c >0、abc=1 に対して、1 + 3/(a+b+c) ≧ 6/(ab+bc+ca)
(3) [不明]
a, b, c >0、abc=1 に対して、2/(a+b+c) + 1/3 ≧ 3/(ab+bc+ca)
695:132人目の素数さん
17/08/22 18:49:45.42 fGEhoquB.net
(1) [出典不明]
a, b, c, d >0、abcd=1 とする。
1/(1+ab+bc+ca) + 1/(1+bc+cd+db) + 1/(1+cd+da+ac) + 1/(1+da+ab+bd) ≦ 1
[疑問]
1/(1+ab+bc+cd) + 1/(1+bc+cd+da) + 1/(1+cd+da+ab) + 1/(1+da+ab+bc) だと、どうなるのだろう?
696:132人目の素数さん
17/08/22 18:56:05.03 fGEhoquB.net
以下、a, b, c >0、abc=1 とする。いずれも出典不明
(1)
(a+b)(b+c)(c+a) + 7 ≧ 5(a+b+c)
(2)
(a+b+c)/3 ≧ {(a^2+b^2+c^2)/3}^(1/5)
(3)
(a-1)/b + (b-1)/c + (c-1)/a ≧ 0
(4)
(a-1)/(b+c) + (b-1)/(c+a) + (c-1)/(a+b) ≧ 0
(5)
(a/c)^2 + (b/a)^2 + (c/b)^2 ≧ 2(a-b)(b-c)(c-a) + 3
-----------------------------------
未整理のmemoの中で abc=1、abcd=1 のタイプは片付いたかも…。
r~~~~~~~~~
__ _ノ きりがないでござる・・・
/__ `ヽ_ ⌒ヽ~~~~~~~~~
|〈___ノf レ1(
,L| しL.し'゙"
"` "′
697:132人目の素数さん
17/08/22 19:09:30.23 fGEhoquB.net
[おまけ]
友愛数みたいな関係でござるな。
(1)
a, b, c >0、a+b+c=3 のとき、a^2 + b^2 + c^2 + abc ≧ 4.
(2)
a, b, c >0、a^2 + b^2 + c^2 + abc = 4 のとき、a+b+c ≦3.
698:132人目の素数さん
17/08/22 21:17:04.84 fGEhoquB.net
>>679
(5) やはり巡回式は全く手が出ない…
699:132人目の素数さん
17/08/23 17:00:04.08 edu8Brze.net
>>667
(1)
1 -6/s +3/t =(1 -3/s)^2 + 9/(3t)- 9/ss ≧ 0, (ss≧3t)
(2)
1 -6/t +3/(su)=(1 -3/t)^2 + 9/(3su)- 9/tt ≧ 0, (tt≧3su)
(3)
a=b<c のとき不成立(a=b≧c では成立)でござる。
700:132人目の素数さん
17/08/23 17:04:32.35 edu8Brze.net
>>680
(1)題意より
(左辺)= s(ss-2t)/3 + u
={4s^3 + 3(s^3 -4st+9u) + 2(ss-3t)}/27
≧(4/27)s^3
= 4,
セビリアMO-2008改
佐藤(訳)、[9] 問題3.118
(2)
題意より、0<a~c<2、
(3-a-b-c)(3+a-b-c+bc)=(4-aa-bb-cc-abc)+ 1 -(2-b)(2-c)(b+c-1)
≧ 1 -(2-b)(2-c)(b+c-1)≧0
∵ b+c-1>0 のとき、AM-GMで(2-b)(2-c)(b+c-1)≦1
イランMO-2002、A.16
>>682 (3)
不等号が逆でござった。
701:132人目の素数さん
17/08/23 22:42:04.81 6dHoZEIo.net
>>679
>>681
(3)
a=y/x, ... とおくだけ
(5)
x=b/a, ..., f(x, y, z)=LHS-RHSとおくと
f(x, y, z) - f(t, t, t) = 3/4 * (x^2+y^2+z^2-xy-yz-zx) >= 0 where t = (x+y+z)/3
よって x = y = z = 1 のとき示せばよいがこれは明らか
702:132人目の素数さん
17/08/23 23:35:42.86 6dHoZEIo.net
>>678
両方とも逆数考えればいい
703:132人目の素数さん
17/08/24 00:19:32.68 9N+3FV4m.net
>>677
(1)
1 -6/s +3/t =(1 -3/s)^2 + 9/(3t)- 9/ss ≧ 0, (ss≧3t)
(2)
1 -6/t +3/(su)=(1 -3/t)^2 + 9/(3su)- 9/tt ≧ 0, (tt≧3su)
(3)
成り立ったでござる。死んでお詫びを…(AA略
704:132人目の素数さん
17/08/24 01:23:07.53 9N+3FV4m.net
>>679
(2)
ss =(aa+bb+cc)+ t + t,
s^6 ≧{(aa+bb+cc) +t +t}^3
≧ 27(aa+bb+cc)tt
≧ 81(aa+bb+cc)su,
∴(s/3)^5 ≧{(aa+bb+cc)/3}u,
〔補題196〕
(8/27)(a+b+c)^5 ≧ (a+b)(b+c)(c+a)(a+b+c)^2 ≧ 24abc(aa+bb+cc),
を使う。(じゅー)
(4)
チェビシェフで,
箔ッ順序積 ≧ 迫随㍼�積,
(左辺)≧(1/3)(a+b+c-3){1/(b+c)+1/(c+a)+1/(a+b)}≧0,
705:132人目の素数さん
17/08/24 03:22:45.56 rYRHhAcs.net
>>687
> 〔補題196〕
> (8/27)(a+b+c)^5 ≧ (a+b)(b+c)(c+a)(a+b+c)^2 ≧ 24abc(aa+bb+cc),
左側はアッサリ、右側はサッパリ…。
8(a+b+c)^3 - 27(a+b)(b+c)(c+a) = 3(s^3-4st+9u) + 5s(s^2-3t) ≧ 0
(a+b)(b+c)(c+a)(a+b+c)^2 - 24abc(aa+bb+cc) = s^3t - 25s^2u +48tu
--------------------------------------------------
ついでに、過去ログ漁っていて出てきたやつですが、すっきりした証明ができませぬ。
[第6章.908]
a,b,c>0のとき、{(a+b+c)(ab+bc+ca)}^2≧27abc(a^3+b^3+c^3),
{(a+b+c)(ab+bc+ca)}^2 - 27abc(a^3+b^3+c^3)
= s^2t^2 - 27s^3u + 81stu - 81u^2
次数が上がると、s, t, u の不等式のどれを組み合わせるか難しくなる。
706:132人目の素数さん
17/08/24 10:30:59.65 9N+3FV4m.net
>>688
〔補題196〕の略証
チョト難しいのでSchurの拡張で。
bはa、cの間にあるとする。
(左辺)-(右辺)= P(a-b)(a-c)+ Q(b-c)(b-a)+ R(c-a)(c-b)
= P(a-b)^2 +(P-Q+R)(a-b)(b-c)+ R(b-c)^2,
P =(b+c)(b+c-a)^2 + 2(a+b+c)(b-c)^2 ≧ 0,
P-Q+R = 2b{(a+c)^2 -6ac+3bb}= 2b{(a+c-3m)^2+3(bb-mm)}≧ 0,
R =(a+b)(a+b-c)^2 + 2(a+b+c)(a-b)^2 ≧0,
ここに、m = min{a,c}、ac=m(a+c-m)
-----------------------------ーーーーーーーーーーーーーーーーーーー--------------------
[第6章.908]の略証
S = aaa+bbb+ccc, T =(ab)^3+(bc)^3+(ca)^3,
p = aab+bbc+cca, q = abb+bcc+caa, u=abc とおく。
pq = T+uS+3uu ≧ 3u(3ST)^(1/3)≧ 3u√(3Su)より、
(左辺)={(a+b+c)(aa+bb+cc)}^2 =(S+p+q)^2 ≧ 9(Spq)^(2/3)≧ 27Su,
Casphy!-不等式2-177 じゅー
707:132人目の素数さん
17/08/25 00:31:48.00 oetrvUQn.net
>>677 (3)
st +6Gt -9GGs ≧ 0,
>>679 (1)
st +6u -5GGs ≧ 0,
の特効薬は無いでござるか?(G=(abc)^(1/3))
3次方程式
X^3 -sX^2 +tX -u=0
の判別式は
27⊿^2 = 27{(a-b)(b-c)(c-a)}^2
= 4(ss-3t)^3 - (2s^3 -9st +27u)^2
=(st-9u)^2 -4(t^3 +s^3・u +27uu -9stu)
=(st+9u)^2 -4(t^3 +s^3・u +27uu)
=(st+6GGs +6Gt +9u)^2 -4(t +Gs +3GG)^3,
3つの実根 a,b,c をもつときは
st+6GGs+6Gt+9u ≧ 2(t+sG+3GG)^(3/2),
と思われるが、さて…
708:132人目の素数さん
17/08/25 01:15:11.00 3FtU8w0T.net
>>679
>>690
f(a, b, c)=LHS-RHS, a>=c>=b とすると
f(a, b, c)- f(a, t, t) = 1/4 *(2a-b-c) >= 0 where t = (b+c)/2
f(a, b, c) - f(ab, c, 1) = (a-1)(1-b)(c^2+abc+ab+bc+ca+c-5) >=0
よって a = b = c = 1 のとき調べればよいが明らか
709:132人目の素数さん
17/08/25 01:21:08.15 3FtU8w0T.net
>>691
二個目の不等式成り立たないや
710:132人目の素数さん
17/08/25 04:26:49.66 Yhp4f37o.net
>>690
f(X) = X^3 -sX^2 +tX -u
f'(X) = 3X^2 - 2sX + t
AN-GMより f'(X)の判別式 D/4 = s^2-3t ≧0
f'(X)=0の解α,βは、α+β, αβ>0 より、α,β>0
また f(0)=-u<0
グラフを考えると、f(X)=0が正の解a, b, cをもつ条件は f(α)f(β)≦0
f(α)f(β) = -(s^2t^2 - 4s^3u +18stu - 4t^3 -27u^2) ≦0
∴ s^2t^2 - 4s^3u +18stu - 4t^3 -27u^2 ≧0
残念無念…
s, t, u に関する既知の不等式が出てきただけでござった。
s^2t^2 - 4s^3u +18stu - 4t^3 -27u^2 = {(a-b)(b-c)(c-a)}^2
('A`) ,..;:~''"
ノ( ヘヘ ,,.、;;:~'''
711:132人目の素数さん
17/08/25 17:27:20.09 oetrvUQn.net
>>677 (3) が成立つとする。
2/s + 1/3 ≧ 3/t,
または
t ≧ 9s/(s+6),
一方、9ss -(s+6)(5s-6)= 4(s-3)^2 ≧ 0 より
9s/(s+6)≧(5s-6)/s,
したがって
t ≧(5s-6)/s,
または
st + 6 ≧ 5s >>679(1)
それぢゃ、>>677(3)はどうするか?
712:132人目の素数さん
17/08/25 19:30:02.99 Yhp4f37o.net
Schur's inequality を対称性を崩さずに証明するときの以下の変形は、どうやって思いつくんでしょうか?
F_1 = xy(x+y)(x-y)^2/{(y+z)(z+x)} + yz(y+z)(y-z)^2/{(z+x)(x+y)} + zx(z+x)(z-x)^2/{(x+y)(y+z)}
F_2 = {(x+y-z)2(x-y)^2 + (y+z-x)2(y-z)^2 + (z+x-y)2(z-x)^2 }/2
713:132人目の素数さん
17/08/25 22:34:00.62 oetrvUQn.net
>>695
>>665 にある文献か
Casphy! - highmath - 不等式2 - 175(じゅー)
をサンショウウオ
714:132人目の素数さん
17/08/26 01:33:14.23 MEky4IFO.net
[疑問1]
Schur's inequality を対称性を崩さずに証明できるのは、n=0,1,2,3 以外には知られていないのかな?
検索の仕方が下手なのか見当たらんでござる。
[疑問2]
>>677のように、同次でない不等式の証明で、お決まりのテクニックって何じゃらほい?
条件式を使って無理やり同時にして、基本対称式の不等式を利用するくらいしか思いつかないけど、
この問題では、条件式を使っても3乗根が現れて大変だし…
715:132人目の素数さん
17/08/26 02:00:02.17 a5WQhO5r.net
>>695 >>697 [1]
拙者にも分かりませぬ。
F_(n+3)=(x+y+z)F_(n+2)-(xy+yz+zx)F_(n+1)+ xyz F_n
では対称性は崩れませぬが、うまく証明できるのか疑問だし。
716:132人目の素数さん
17/08/26 02:32:02.40 MEky4IFO.net
>>698
> F_(n+3)=(x+y+z)F_(n+2)-(xy+yz+zx)F_(n+1)+ xyz F_n
ちょうど今、その等式を導いたとこでござる。
それから F_1 を対称性を保つように変形中に次式が出てきて、Wolfram先生に確認してもらった。
F_1
= (1/2){(x^2+y^2-z^2)(x-y)^2 + (y^2+z^2-x^2)(y-z)^2 + (z^2+x^2-y^2)(z-x)^2}
= (1/2){(x+y-z)^2(x-y)^2 + (y+z-x)^2(y-z)^2 + (z+x-y)^2(z-x)^2}
しかし、ここから (結果を知らずに) 次式に変形する方法が思いつかない。
F_1 = xy(x+y)(x-y)^2/{(y+z)(z+x)} + yz(y+z)(y-z)^2/{(z+x)(x+y)} + zx(z+x)(z-x)^2/{(x+y)(y+z)}
717:132人目の素数さん
17/08/26 15:31:34.41 a5WQhO5r.net
>>698
3F_2 = 2(x+y+z)F_1 +{(x+y+z)^2 -4(xy+yz+zx)}F_0,
を使うと
F_3 =(xx+yy+zz)F_1 - 2xyzF_0
となるが、その後が…
700げとー
718:132人目の素数さん
17/08/26 16:54:34.17 a5WQhO5r.net
>>700
P=p(z-y), Q=q(x-z), R=r(y-x), p+q+r=0 のとき
P(x-y)(x-z)+ Q(y-z)(y-x)+ R(z-x)(z-y)
=(p+q+r)⊿
= 0,
ここに⊿=(x-y)(y-z)(z-x),
例 p=z-y,q=x-z,r=y-x のとき P=pp、Q=qq、R=rr.
719:132人目の素数さん
17/08/27 00:28:26.43 NetfQ0ow.net
>>677 (3) >>690 >>694
・t≧9 のときは明らか。
・3≦t≦9 のとき。
24tt -(9-t)(t^3 +9u)= t(t-3)^3 + 3(9-t)(t-3)≧ 0,
(9-t)/3t ≦ 8t/(t^3 +9u),
(左辺)-(右辺)=(2/s + 1/3)- 3/t
= 2/s - (9-t)/3t
≧ 2/s -8t/(s^3 +9u)
= 2
720:(s^3 -4st +9u)/{s(s^3 +9u)} = 2F_1(x,y,z)/{s(s^3 +9u)} ≧ 0,
721:132人目の素数さん
17/08/27 00:47:52.80 NetfQ0ow.net
>>677 (3) >>690 >>694
・t≧9 のときは明らか。
・3≦t≦9 のとき。
24tt -(9-t)(t^3 +9uu)= t(t-3)^3 +3(9-t)(t-3)≧ 0,
(9-t)/3t ≦ 8t/(t^3 +9uu),
(左辺)-(右辺)=(2/s + 1/3)- 3/t
= 2/(su) - (9-t)/3t
≧ 2/(su) -8t/(t^3 +9uu)
= 2(t^3 -4stu +9uu)/{su(t^3 +9uu)}
= 2uu・F_1(1/x,1/y,1/z)/{s(t^3 +9uu)}
≧ 0,
722:132人目の素数さん
17/08/27 01:08:20.58 NetfQ0ow.net
>>679 (1) >>690
・t≧5 のときは明らか。
・3≦t≦5 のとき、
24t -(5-t)(t^3 +9uu)=(t-3)^4 +7(t-3)^3 +9(t-3)^2 +6(t-3)≧0,
5-t ≦ 24t/(t^3 +9uu),
(左辺)-(右辺)= 6 -(5-t)s
≧ 6 -24st/(t^3 +9uu)
= 6(t^3 -24stu +9uu)/(t^3 +9uu)
= 6u^3・F_1(1/x,1/y,1/z)/(t^3 +9uu)
≧ 0,
723:132人目の素数さん
17/08/27 02:24:43.88 NetfQ0ow.net
>>702 は大間違いです。
724:132人目の素数さん
17/08/27 10:23:54.77 NetfQ0ow.net
>>703 >>704
t^3 -4stu +9uu = u^3・F_1(1/x,1/y,1/z)= uu・F_{-2}(x,y,z)
={(z^5)(xx-yy)^2 + (x^5)(yy-zz)^2 +(y^5)(zz-xx)^2}/{(x+y)(y+z)(z+x)}
≧0
を使いますた。
725:132人目の素数さん
17/08/27 16:11:26.92 NetfQ0ow.net
>>677
佐藤(訳):文献[9]、演習問題1.86
u=1 のときは(s,t)を入れ換えても成り立つ。(duality)
726:132人目の素数さん
17/08/27 16:26:59.89 NetfQ0ow.net
>>388 (5) >>450
〔Hlawkaの不等式〕を拡張…
r≧1 のとき
K(r){|a|^r +|b|^r +|c|^r +|a+b+c|^r}≧|a+b|^r +|b+c|^r +|c+a|^r,
ここに K(r)は
1≦r≦2 のとき、K(r)=(2^r)/{1+3^(r-1)},
2≦r のとき、K(r)= 2^(r-2),
kurims 講究録-1136-11 p.90-95 (2000) Theorem 2
>>449 (2)
佐藤(訳):文献[9]、演習問題1.43、問題3.67
(1+ab)(1+a)= ab(1+c)/(1+a), など。
AM-GMする。
>>453
佐藤(訳):文献[9]、演習問題1.61
x^3 +x^3 +y^3 ≧ 3xxy, (AM-GM)より
x^3 +y^3 +z^3 ≧ xxy + yyz + zzx,
(x,y,z)=(a,b,c)と(x,y,z)=(ab,bc,ca)をたす。
727:132人目の素数さん
17/08/27 20:32:51.97 u/VQjdir.net
>>689
> 〔補題196〕の略証
> (左辺)-(右辺)= P(a-b)(a-c)+ Q(b-c)(b-a)+ R(c-a)(c-b)
この形に変形するのって、ものすごく大変なんじゃないん?
728:132人目の素数さん
17/08/27 23:16:42.54 NetfQ0ow.net
>>709
その通り。
(a,b,c)=(1,1,1)以外に(1,1,2)(1,2,1)(2,1,1)でも等号が成立するから、チョト難しい。
他に使えそうな方法は無いか?
729:132人目の素数さん
17/08/28 00:00:38.32 4VsD2YTN.net
>>708
解答も訂正。
>>453
チェビシェフ(または AM-GM)で
a^3 +b^3 +c^3 ≧ aab + bbc + cca = (a/c + b/a + c/b)u,
(ab)^3 +(bc)^3 +(ca)^3 ≧ ab(bc)^2 + bc(ca)^2 + ca(ab)^2 = (b/a + c/b + a/c)uu,
辺々たす。
730:132人目の素数さん
17/08/28 01:54:30.17 4VsD2YTN.net
>>679 (5)
a/c=y, b/a=z, c/b=x とおくと xyz=1.
(a-b)(b-c)(c-a)/abc =(a/b +b/c +c/a)-(c/b +a/c +b/a)=(xy+yz+zx)-(x-y-z),
(左辺)-(右辺)=(xx+yy+zz)-2(xy+yz+zx)+2(x-y-z)-3
=(x+y+z)^2 -4(xy+yz+zx)+2s -3
={F_1(x,y,z) -9xyz}/s +2s -3
= F_1(x,y,z)+(2s+3)(s-3)/s
≧0, (s=x+y+z≧3)
731:132人目の素数さん
17/08/28 03:43:27.12 Xt3/xWpv.net
(1) a, b, c>0 に対して、(a+b+c)^5 ≧ 81abc(a^2+b^2+c^2)
(2) a, b, c>0 に対して、(a+b+c)^6 ≧ 27(a^2+b^2+c^2)(ab+bc+ca)^2
AOPS:URLリンク(artofproblemsolving.com)
[疑問1]
(1)の証明について、
(a+b+c)^3 - 3(a+b)(b+c)(c+a) = s^3 - 3(st-u) = s(s^2-3t) + 3u >0
∴ (a+b+c)^3 > 3(a+b)(b+c)(c+a) ---(A)
>>687 〔補題196〕 の右側
(a+b)(b+c)(c+a)(a+b+c)^2 ≧ 24abc(a^2+b^2+c^2) ---(B)
(A),(B)から、
(a+b+c)^3 *(a+b+c)^2 > 3(a+b)(b+c)(c+a)*(a+b+c)^2 ≧ 3*24abc(a^2+b^2+c^2)
等号が成り立たなくなるが、実際は例えば、a=b=c のときに等号が成り立つ。
このやり方は、何か間違っているのかな?
A≧B を証明するときに、途中に式を挟んで A≧
732:C、C≧B を証明することがあるけど、 A=C かつ C=B から出した等号成立条件が、A=Bの等号成立条件と一致しないことがあるのは仕方のないことなのかな? (具体例がすぐには出てこないけど、絶対値の入った不等式の証明とかで、なったことがある) [疑問2] (2)の証明が分かりませぬ…。 (1)を次のように証明して、そのコメントに、「コーラを飲んだらゲップが出るくらい明らか(嘘訳)」 と書いてあるけど、ピンときませぬ…。 (a+b+c)^6 ≧ 27(a^2+b^2+c^2)(ab+bc+ca)^2 ≧ 81abc(a^2+b^2+c^2)
733:132人目の素数さん
17/08/28 06:21:36.55 Xt3/xWpv.net
>>689
Q = (c+a)(c+a-b)^2 + 2(a+b+c)(c-a)^2 ですよね?
734:132人目の素数さん
17/08/28 06:30:48.05 Xt3/xWpv.net
>>688-689
> (a+b)(b+c)(c+a)(a+b+c)^2 ≧ 24abc(aa+bb+cc)
>
> bはa、cの間にあるとする。
> (左辺)-(右辺)
> = P(a-b)(a-c)+ Q(b-c)(b-a)+ R(c-a)(c-b)
> = P(a-b)^2 +(P-Q+R)(a-b)(b-c)+ R(b-c)^2,
>
> P =(b+c)(b+c-a)^2 + 2(a+b+c)(b-c)^2 ≧ 0,
> P-Q+R = 2b{(a+c)^2 -6ac+3bb}= 2b{(a+c-3m)^2+3(bb-mm)}≧ 0,
> R =(a+b)(a+b-c)^2 + 2(a+b+c)(a-b)^2 ≧0,
> ここに、m = min{a,c}、ac=m(a+c-m)
Q = (c+a)(c+a-b)^2 + 2(a+b+c)(c-a)^2 として、P-Q+R を計算したら、
P-Q+R = 2b{(a+c)^2 -6ac+3bb} + 8(c+a){(c-a)^2 + ca}
となったけど、計算合っているか確認おねがいしますだ。
735:132人目の素数さん
17/08/28 06:52:45.91 Xt3/xWpv.net
>>715
ごめん。私の計算違いでした。
ヘ))∧
(゚ ∀゚ )
ノ || y / ヽ 切腹しまつ
━(m二フ⊂[__ノ、
(_(__ノ
736:132人目の素数さん
17/08/28 11:53:15.27 4VsD2YTN.net
>>712 の訂正
× (x-y-z)
○ (x+y+z)
>>713
[疑問1]
(1)は >>679 (2)ですね。
>>687 を参照。
あえて難しい〔補題196〕を使う必要は無かったですね。
[疑問2]
>>687 を参照。
(2)と(ab+bc+ca)^2 ≧ 3abc(a+b+c) から(1)を出します。
>>714
そうです。
737:132人目の素数さん
17/08/28 21:24:09.98 fpou6rxt.net
>>713
(1)
A >= 81B という不等式を示すのに A > 72B という不等式を示しても何も意味がない
より雑な不等式にしてるんだから等号が成立しなくなるのは必然
[疑問1]
A >=C, C >=B の両方の等号成立条件を合わせたものが A >= B の等号成立条件
(2)
因数分解が一番簡単
[疑問2]
uvw で右側の不等式は明らか
(おそらく AoPS での解き方はこれ)
738:132人目の素数さん
17/08/28 22:03:31.85 Xt3/xWpv.net
>>718
なんと! 因数分解できるとは…
(a+b+c)^6 - 27(a^2+b^2+c^2)(ab+bc+ca)^2
= (a^2 + b^2 + c^2 + 8ab + 8bc + 8ca)(a^2 + b^2 + c^2 - ab - bc - ca)^2
UVW-method って、これのことですか?
URLリンク(brilliant.org)
739:132人目の素数さん
17/08/28 22:42:48.32 sqcQ/xXt.net
>>719
それだよ
wikiがあったんだ
aopsにあるもとの記事読んでもいいと思うけど
740:132人目の素数さん
17/08/29 01:52:29.92 QmBHjFut.net
a, b, c >0 に対して、AM + 3*HM ≧ 5*GM/{16^(1/3)}.
741:132人目の素数さん
17/08/29 03:10:07.75 QmBHjFut.net
>>69 (1)、>>713 (1)
> a, b, c>0 に対して、(a+b+c)^5 ≧ 27(ab+bc+ca)(ab^2 + bc^2 + ca^2)
> a, b, c>0 に対して、(a+b+c)^5 ≧ 81abc(a^2 + b^2 + c^2)
改造手術の時間でござるよ。 右辺の大小は定まるのでせうか?
27(ab+bc+ca)(ab^2 + bc^2 +ca^2) = 27abc * (ab+bc+ca)(a/b + b/c + c/a)
81abc(a^2+b^2+c^2) = 27abc * 3(a^2 + b^2 + c^2)
だから、(ab+bc+ca)(a/b + b/c + c/a) と 3(a^2 + b^2 + c^2) の大小が定まれば…。
(ab+bc+ca)(a/b + b/c + c/a) ≧ (a+b+c)^2 ≧ 3(ab+bc+ca) ≦ 3(a^2 + b^2 + c^2)
適当にやっても、うまく行かんでござる…
..::::::,、_,、::: ::::: ::: :
/ヨミ゙ヽ)-、. :: ::::
─(ノ─ヽ.ソ┴─
742:132人目の素数さん
17/08/29 03:22:58.97 QmBHjFut.net
a, b, c >0 の基本対称式 s, t, u で、曲者を縛るでござる。 (曲者 = a/b + b/c + c/a)
(ab+bc+ca)(a/b + b/c + c/a) ≧ (a+b+c)^2
a(a-b)^2 + b(b-c)^2 + c(c-a)^2 = s^3 - 2st - 3u(a/b + b/c + c/a) ≧ 0
∴ s(s^2-2t)/(3u) ≧ a/b + b/c + c/a ≧ s^2/t
これしか思いつきませぬ…。 他にないでござるかな?
743:132人目の素数さん
17/08/29 03:49:39.64 1
744:JAWO9sa.net
745:132人目の素数さん
17/08/29 04:41:59.71 QmBHjFut.net
>>721、>>724
出典を再発見。 (大量のブックマークの中から探すのに苦労したでござる)
URLリンク(math.stackexchange.com)
斜め読みしたけど、何をやってるのかサッパリでござる ('A`)
>>724
分かりやすい!
でも、この方法では等号がつかないですね。
746:132人目の素数さん
17/08/29 05:25:02.43 QmBHjFut.net
>>721、>>724
ごめん、リンク先の問題をよく見たら、問題が間違っていました。
正しくは、 「a, b, c >0 に対して、AM + HM ≧ 5*GM/{16^(1/3)}」 でした。
747:132人目の素数さん
17/08/29 05:44:11.14 QmBHjFut.net
>>721 再掲
a, b, c >0 に対して、AM + HM ≧ 5*GM/{16^(1/3)}
>>724 の方法を真似てみたが、うまくいかなかった。
A + H
=(A/2) +(A/2)+ H
≧ 3(AAH/4)^(1/3) …(1)
= 3{(ss/(3t))*(u/4)}^(1/3)
≧ 3{(u/4)}^(1/3) …(2)
= 3G/{4^(1/3)}
(1)の等号は A=2H、(2)の等号は a=b=c で異なるから、
A+H > 3G/{4^(1/3)}
問題の右辺と較べたら、5/16^(1/3)} > 3/{4^(1/3)} でした。
748:132人目の素数さん
17/08/29 09:12:22.39 QmBHjFut.net
【問題】
xyz座標平面において、次の不等式で表される立体の体積を求めよ。
|x+y+z| + |-x+y+z| + |x-y+z| + |x+y-z| ≦ 4
検索中に、どこかで見たことのある問題を見つけた。
しばらく検索したものの、出典は分からず…。
コレクションに入っているかと探したが、そこにもなかった。
これが、どんな立体図形になるのかも分かりませぬ ('A`)ヴォエァ!
749:132人目の素数さん
17/08/29 09:27:12.29 QmBHjFut.net
>>679 (1) について
問題再掲
a, b, c >0、abc=1 に対して、(a+b)(b+c)(c+a) + 7 ≧ 5(a+b+c).
解答
>>704、>>706
うますぎて、思いつきませぬ。
以下のような泥臭い方法で考えていたんだけど、行き詰まったでござる。
左辺 - 右辺 の最小値を考える。
abc=1 があるので、実質2文字の関数で、一方を任意に固定して、一変数関数で考えて出せないかと。
750:132人目の素数さん
17/08/29 10:12:25.32 PqzL+0/+.net
>>728
立方八面体
URLリンク(imgur.com)
751:132人目の素数さん
17/08/29 11:45:47.48 1JAWO9sa.net
>>728
|a+b|+|a-b|= 2 Max{|a|,|b|}を使うと、
(左辺)= Max{4|x|,4|y|,4|z|,2|x+y+z|,2|-x+y+z|,2|x-y+z|,2|x+y-z|}
|x|≦1
|y|≦1
|z|≦1
|x+y+z|≦2
|-x+y+z|≦2
|x-y+z|≦2
|x+y-z|≦2
の14面で囲まれた立方八面体でござる。
>>729
t^3 -4stu +9uu ≧ 0, >>706
s = a+b+c ≦ (t^3 +9uu)/4tu
u = abc = 1
を使って sとu を消し、t=ab+bc+ca だけの関数で考えて出したのが >>704
752:132人目の素数さん
17/08/29 14:01:31.73 1JAWO9sa.net
>>726 >>727
等号成立は(x、y、z)=λ(1,4,4) and cyclic shift
という所がミソ
753:132人目の素数さん
17/08/29 17:18:34.40 QmBHjFut.net
>>731
> t^3 -4stu +9uu ≧ 0, >>706
> s = a+b+c ≦ (t^3 +9uu)/4tu
> u = abc = 1
> を使って sとu を消し、t=ab+bc+ca だけの関数で考えて出したのが >>704
なるほど。 u=1 だから、s か t のどちらかを消せばよいと。
そこで s を消すために、sを含む s, t, u の不等式の中から、s≦f(t) となりそうなものとして F_1 を選んだ訳でござるな。
考え方が分かってスッキリ!
するってぇと何かい? t^2 ≧ 3su を使ってもいいってことだね?
s ≦ (t^2)/(3u) = (t^2)/3 より、3≦t≦5 のとき、
(左辺)-(右辺)
= 6 - (5-t)s
≧ 6 - (5-t)*(t^2)/3
= (t-3)(t^2-2t-6)/3
-3 ≦ t^2-2t-6 ≦ 5 となって失敗したでござる。 F_1 じゃなきゃダメなのか…。
754:132人目の素数さん
17/08/29 17:34:23.21 QmBHjFut.net
>>733
-3 ≦ t^2-2t-6 ≦ 9 の間違いですた
755:132人目の素数さん
17/08/30 01:43:40.46 BK+APDDw.net
>>733
F_1 じゃなきゃダメですね…。
マクラーレン・ホンダ:F_1ベルギーGPの決勝レポート(8/28)
マクラーレンはF_1ベルギーGP決勝で、S.バンドーンが14位、F.アロンソはリタイアだった。
両ドライバーは見事なスタートを切り、F.アロンソは1周目には10番手から7番手に浮上。
しかし、その後エンジンの不調が発生したためリタイアし、入賞を逃しますた。残念
756:132人目の素数さん
17/08/30 02:37:18.32 4Q4sm7+y.net
怒涛の abc=1 シリーズの際に書いたつもりが、書いてなかったようなので。
【問題】
a, b, c >0、abc=1 に対して、
1/(1+a)^3 + 1/(1+b)^3 + 1/(1+c)^3 + 5/{(1+a)(1+b)(1+c)} ≧ 1
∧_∧ 積一定?
( ・ω・)=つ≡つ ボコボコにしてやんよ!
(っ ≡つ=つ
/ ) ババババ
( / ̄∪
757:132人目の素数さん
17/08/30 08:12:26.22 4Q4sm7+y.net
>>677
(3)をプチ改造。
a, b, c >0、abc=1 に対して、2/(ab+bc+ca) + 1/3 ≧ 3/(a+b+c).
758:132人目の素数さん
17/08/30 08:19:26.75 4Q4sm7+y.net
>>722
成り立たなかった…。(a,b,c) = (1,1,2), (1,1,1), (1,1,1/2)
759:132人目の素数さん
17/08/30 08:34:33.56 4Q4sm7+y.net
>>732
AM-GM や Schur で証明できた場合は、等号成立条件が a=b=c になってしまうから、
証明の中で、それ以外の特殊な不等式が必要になるってことですかね?
760:132人目の素数さん
17/08/30 11:56:04.84 BK+APDDw.net
>>737
(a,b,c) →(1/a,1/b,1/c)としたでござるな。
a+b+c → (ab+bc+ca)/abc,
ab+bc+ca → (a+b+c)/abc,
abc → 1/abc,
>>703 の(s,t)を入れ換えて
F_1(a,b,c)= s^3 -4st +9u ≧0,
t ≦(s^3 +9u)/4s,
これを使えば おk >>707
>>739
そうですね。
AM-GM や Schurは(1,4,4)で等しくないので使えません。
761:132人目の素数さん
17/08/30 17:00:49.35 4Q4sm7+y.net
>>736
難しいので、劣化改造してみた。こちらは力任せに証明できる。
a, b>0 かつ ab=1 のとき、1/(1+a)^2 + 1/(1+b)^2 + 2/{(1+a)(1+b)} ≧1.
762:132人目の素数さん
17/08/30 17:18:01.56 4Q4sm7+y.net
ところで、AM + GM に関する不等式って何かあったっけ? Jacobsthal は差だし、Sierpinskiは商か。
763:132人目の素数さん
17/08/30 17:24:20.42 4Q4sm7+y.net
>>741
この劣化版って、等式だった…
764:132人目の素数さん
17/08/31 00:00:50.60 iQe17wVf.net
>>679
(4)をプチ改造。Nesbittの間に割り込んだ形ですね。
a, b, c >0、abc=1 に対して、
a/(b+c) + b/(c+a) + c/(a+b) ≧ 1/(b+c) + 1/(c+a) + 1/(a+b) ≧ 3/2
765:132人目の素数さん
17/08/31 00:14:37.43 iQe17wVf.net
>>744
左は(4)を変形しただけ。
右は間違っているかもしれん。
Cauchyの後にAM-GMを使ったんだけど、AM-GMの不等号が逆で、証明になっていなかった。
766:132人目の素数さん
17/08/31 00:17:09.96 iQe17wVf.net
結局、こうですね。
a, b, c >0、abc=1 に対して、
a/(b+c) + b/(c+a) + c/(a+b) ≧ 1/(b+c) + 1/(c+a) + 1/(a+b) > 0
767:132人目の素数さん
17/08/31 02:42:09.91 iQe17wVf.net
これでOK?
λを正定数、a, b>0 かつ ab=1 のとき、
1 + λ/4 ≧ 1/(1+a)^2 + 1/(1+b)^2 + (2+λ)/{(1+a)(1+b)} ≧1.
768:132人目の素数さん
17/08/31 02:45:27.34 iQe17wVf.net
λを正定数、a, b>0 かつ ab=1 のとき、
1 + λ/4 ≧ 1/(1+a)^2 + 1/(1+b)^2 + (2+λ)/{(1+a)(1+b)} > 1.
こうですね。
769:132人目の素数さん
17/08/31 04:26:22.51 iQe17wVf.net
>>728
エレ解 1997.9 だった。
770:132人目の素数さん
17/08/31 07:12:05.62 iQe17wVf.net
a, b, c ≧0 かつ a+b+c=1 のとき、a*(a+b)^2*(b+c)^3*(c+a)^4 の最大値を求めよ。
771:132人目の素数さん
17/08/31 10:46:05.27 DG2IOYgq.net
>>750
GM-AM で
(与式)= 16・a・(a+b)^2・(b+c)^3・{(c+a)/2}^4
≦ 16{[a + 2(a+b)+ 3(b+c)+ 4((c+a)/2)]/(1+2+3+4)}^10
= 16{(a+b+c)/2}^10
= 1/64. (← a+b+c=1)
等号は(a,b,c)=(1/2,0,1/2)
772:132人目の素数さん
17/08/31 22:15:21.12 A7wnlx0o.net
>>744
a, b, c >0, abc=1
a/(b+c) + b/(c+a) + c/(a+b) >= 1/(b+c) + 1/(c+a) + 1/(a+b) + (3/2 - 4/((a+b)(b+c)(c+a)))
773:132人目の素数さん
17/08/31 22:18:05.59 A7wnlx0o.net
>>752
間違えた
a, b, c >0, abc=1
a/(b+c) + b/(c+a) + c/(a+b) >= 1/(b+c) + 1/(c+a) + 1/(a+b) + (1/2 - 4/((a+b)(b+c)(c+a)))
774:132人目の素数さん
17/09/01 00:01:46.44 3P2EPmWz.net
【問題A】a, b, c >0 とする。
(1)
(ab+bc+ca)^3 ≧ (a^2 + 2b^2)(b^2 + 2c^2)(c^2 + 2a^2)
(2)
(a^2 + b^2 + c^2)^3 ≧ (a+b+c)(ab+bc+ca)(a^3 + b^3 + c^3)
(3)
(a^2 + bc)(b^2 + ca)(c^2 + ab) ≧ abc(a+b)(b+c)(c+a)
(4)
3*{(ab)^2 + (bc)^2 + (ca)^2} ≧ (ab+bc+ca)(a^2 + b^2 + c^2)
(5)
(a^2 + ab + b^2)(b^2 + bc + c^2)(c^2 + ca + a^2) ≧ (ab+bc+ca)^3
(6)
(a^2 + b^2 + c^2)/(ab+bc+ca) + 8abc/(a+b)(b+c)(c+a) ≧ 2
【問題B】
(7)
a, b, c, d >0 に対して、(a+b+c-d)(b+c+d-a)(c+d+a-b)(d+a+b-c) ≦ (a+b)(b+c)(c+d)(d+a)
(8)
0 ≦ a, b, c ≦ 1 に対して、a^(bc) + b^(ca) + c^(ab) > 2
【参考】
(8)の類題 [第5章.698, 708]
a, b, c >0 に対して、a^(b+c) + b^(c+a) + c^(a+b) ≧ 1
___ ====
\ ./ ≧ \ ====
\| \ ./ ::::|
| ●) ●) :::::| そんな不等式で俺様がクマ―!!
ヽ......ワ...:::::.ノ
`つ `つ (´⌒(´
ゝ_つ_`つ≡≡≡(´⌒;;;≡≡≡
(´⌒(´⌒;;
ズザザザ
775:132人目の素数さん
17/09/01 00:16:20.58 3P2EPmWz.net
【問題】
a, b, c >0 に対して、2*QM + 3*GM ≦ 5*AM。 ただし、QM = √{(a^2+b^2+c^2)/3}
776:132人目の素数さん
17/09/01 06:54:43.37 3P2EPmWz.net
>>388
条件 x>y が抜けとる。すみませぬ。
訂正
x>y>0 かつ (x^6)(y^2) - (x^5)(y^3) + (x^5)(y^5) - (x^4)(y^6) ≧ 4 のとき、x^3+y^2≧3.
777:132人目の素数さん
17/09/01 11:18:02.33 QpLZW4eS.net
>>754
(1)
aa=A,bb=B,cc=C とおいて考える。
(右辺)=(A+2B)(B+2C)(C+2A)
= 2(AAB+BBC+CCA)+ 4(ABB+BCC+CAA)+ 9ABC,
(左辺)=(ab+bc+ca)^3
= aabb(ab+3bc+3ca)+ bbcc(bc+3ca+3ab)+ ccaa(ca+3ab+3bc)+6(abc)^2
≦ AB(2A+2B+3C)+ BC(2B+2C+3A)+ CA(2C+2A+3B)+ 6ABC
= 2(AAB+BBC+CCA)+ 2(ABB+BCC+CAA)+15ABC,
(右辺)-(左辺)≧ 2(ABB+BCC+CAA-3ABC)≧ 0, (← AM-GM)
(4) a>>b,c では不成立?
(5)コーシーで
(ab+bb+aa)(bb+bc+cc)(aa+cc+ca)≧(ab+bc+ca)^3
(6)
9(st-u) - 8st = 9(a+b)(b+c)(c+a)- 8(a+b+c)(ab+bc+ca)
= a(b-c)^2 + b(c-a)^2 + c(a-b)^2
≧0,
(左辺)-2 = (ss-4t)/t + 8u/(st-u)
≧ 8s(ss-4t)/{9(st-u)} + 8u/(st-u)
= 8(s^3 -4st+9u)/{9(st-u)}
= 8F_1(a,b,c)/{9(st-u)}
≧0,
778:¥
17/09/01 14:09:25.39 7A4+w7Rv.net
¥
779:¥
17/09/01 14:09:44.29 7A4+w7Rv.net
¥
780:¥
17/09/01 14:10:00.19 7A4+w7Rv.net
¥
781:¥
17/09/01 14:10:16.39 7A4+w7Rv.net
¥
782:¥
17/09/01 14:10:32.17 7A4+w7Rv.net
¥