不等式への招待 第8章at MATH
不等式への招待 第8章 - 暇つぶし2ch370:132人目の素数さん
17/08/02 13:10:06.22 iuzeTNl6.net
>>358
相加平均(x+y+z)/3 = A とおくと、0≦A≦1.
x(1-x)+ y(1-y)+ z(1-z)
 =(x+y+z)- (xx+yy+zz)
 ≦ 3(1-A)・A   (←1変数)
 ≦{[3(1-A)+ A]/2}^2
 ≦{(3-2A)/2}^2
(左辺)≦ A +(3-2A)/2 = 3/2,
等号成立は 3(1-A)=A、A=3/4、x=y=z= 3/4 のとき
>>359
{a^n,b^n,…,b^n}の相加-相乗平均で
 a^n +(n-1)b^n ≧ na・b^(n-1),
 (a^n)/b^(n-1)≧ na - (n-1)b,
巡回的にたす。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch