17/07/19 19:52:03.56 OXFuyCoZ.net
>>170
>>2 [3] 「不等式への招待」(1987)p.28-30 を読むと
B_i = x_{i+1} + x_{i+2}
とおく。ただし x_{n+1} = x_1, x_{n+2} = x_2
コーシーより
Σ[i=1,n] x_i / B_i ≧ (Σ[i=1,n] x_i)^2 / {Σ[j=1,n] x_j B_j},
ゆえ
(Σ[i=1,n] x_i)^2 -(n/2)Σ[j=1,n] x_j B_j ≧ 0
を言えばよい。
n=3,5 の場合は
{1/(n-1)}Σ[1≦i<j≦n] (xi-xj)^2 ≧ 0,
n=4 のとき
(x1-x3)^2 + (x2-x4)^2 ≧ 0,
n=6 のとき
(1/2){(y1-y2)^2 + (y2-y3)^2 + (y3-y1)^2} ≧ 0,
ここに、y1=x1+x4、y2=x2+x5、y3=x3+x6
と思うけど…