17/06/20 14:04:36.07 5V5YP6AB.net
>>46-47
どうも。スレ主です。
1.「影響」については、わざわざ定義するほどのこともなく、”最後の箱を除く確率が、列の長さに異存するだろう”という趣旨
2.例えば、>>43に書いたように箱の列がL個の箱から成るとして、もし最後の箱だけを特別視する必要がなければ、決定番号がLになる確率は1/Lだと
3.さて、話を簡単にするために(「影響」の話とは外れるが)、箱の列がL個の箱から成るとして、決定番号は1~Lの範囲となる。
決定番号がLとなる確率をPLとおく。決定番号kが1以上でL未満(1<= k <L)となる確率をPkとおく。
当然、PL+Pk=1となる。
4.もし、Pkが0以上の確率を持てば、決定番号がLとなる確率PLを除いて、Pkだけを使えば良い。
5.だが、これは>>36 Sergiu Hart氏 ”・・boxes is finite Player 1・・ a win with probability 1 in game1, and with probability 9/10 in game2, ・・”に矛盾するのでは?*)
注*)
1.Player 1が勝つ確率が1なら、Player 2が勝つ確率は0
同様に、Player 1が勝つ確率が9/10なら、Player 2が勝つ確率は1/10
となる。これらの結果と矛盾するのでは?ということ
2.時枝記事は、”Player 2から見た勝つ確率として、「99/100」などと書いている”ことを指摘しておく
3.上記3項は、上記2項と異なり、必ずしも「決定番号がLになる確率は1/L」とはならない場合を考えた例です