現代数学の系譜 古典ガロア理論を読む35at MATH
現代数学の系譜 古典ガロア理論を読む35 - 暇つぶし2ch519:現代数学の系譜 古典ガロア理論を読む
17/07/06 15:10:53.30 qgJA+Zd6.net
>>464
おっちゃん、どうも、スレ主です。

>その内容としておかしくなる場合を挙げたんだよ。
>いわゆる、記事が適用出来なくなるような場合だよ。

細かい点はともかく(^^
数学セミナーという、どちらかと言えば、大学生とかアマ数学愛好家向けの雑誌記事としては、不適切な(あるいは不親切な)記事だと思うね(^^

520:現代数学の系譜 古典ガロア理論を読む
17/07/06 15:12:22.39 qgJA+Zd6.net
>>465-467
¥さん、どうも。スレ主です。

>だから昔のKolmogorovがやったのはBachelierとかWienerとかをちゃんと勉強して、そん
>で「あんな公理系を抽出する」という、まあ超人じゃないと決して出来ない話なんでしょ
>うね。例のvon Neumannの公理系だって、かなり異常な超人でなければあんな事は出来ま
>せわね。だからちゃんとした応用数学ってのは、猛烈に難しいですわ。

はあ?? Kolmogorovやvon Neumannと、”対等目線”で考えているんだね・・
私ら、Kolmogorovやvon Neumannが作った舞台の中でしか、思考が働きませんが・・(^^

しかし、私見では、von Neumannの量子力学の基礎より、Kolmogorovの測度論的確率論に対する方が、21世紀の各方面の人々の問題意識は高そうですよね(^^
「Kolmogorovの測度論的確率論は不十分!」という論文は、検索のキーワードをうまく選ぶと、結構多く見つかりますし・・

>物理学者の議論は『分厚いコンクリートの壁の向こう側で何か叫んでる』

ここ、例えは悪いかもしれないが、物理学者を臨床医に例えると、まあ目の前に病人が居て、「さてどう治療するか」と、対処療法を叫んでいる
数学者を、大学の医学研究者に例えると、「病気の原因をきちんと突き止めるのが先だろう」と。「まず、この病気の”定義”を議論しようよ」と(^^

521:現代数学の系譜 古典ガロア理論を読む
17/07/06 15:13:58.62 qgJA+Zd6.net
>>459 補足
>L^p空間

おっちゃん、どうも、スレ主です。
おっちゃん、関数解析に詳しそうだから聞くが・・(^^

「数列空間」というのがあるらしいですね。まっとうな数学の研究対象として(下記)
で、一見時枝記事の数列も、「数列空間」と思ったけれど

まっとうな数学の研究対象とするには、数列に”上限ノルム”や”収束”など、数学的に扱いやすいように、限定するみたいですね~(^^
時枝記事の数列のように、全く制限なしだと、その数学的取り扱いが難しいように思いますが、おっちゃん、どう思いますか?

URLリンク(ja.wikipedia.org)
数列空間
(抜粋)
関数解析学および関連する数学の分野における数列空間(すうれつくうかん、英: sequence space)とは、実数あるいは複素数の無限列を元とするベクトル空間のことを言う。またそれと同値であるが、自然数から実あるいは複素数体 K への関数を元とする関数空間のことでもある。
そのような関数すべてからなる集合は、K に元を持つ無限列すべてからなる集合であると自然に認識され、関数の点ごとの和および点ごとのスカラー倍の作用の下で、ベクトル空間と見なされる。すべての数列空間は、この空間の線型部分空間である。通常、数列空間はノルムを備えるものであり、そうでなくとも少なくとも位相ベクトル空間の構造を備えている。
解析学におけるもっとも重要な数列空間のクラスは、p-乗総和可能数列からなる関数空間 ?p である。それらの空間は p-ノルムを備え、自然数の集合上の数え上げ測度に対するLp空間の特別な場合と見なされる。
収束列や零列のような他の重要な数列のクラスも数列空間を構成し、それらの場合はそれぞれ c および c0 と表記され、上限ノルムが備えられる。任意の数列空間は各点収束の位相を備えるものでもあり、その位相の下でのそれらの空間は、FK空間(英語版)と呼ばれるフレシェ空間の特殊な場合となる。

522:¥
17/07/06 15:52:09.03 zEDyZoZZ.net
例えば「山中さん」を考えるとですね、彼の目の前には「相手とすべき細胞の組織分化」
が、まあ(ずっと遠くで、雲の上から)『叫び声を上げてる』んでしょうね。相手は猛烈
に複雑な対象だからそりゃ大変であり、それこそ数学者の苦悩なんてメじゃないでしょう。

でもメンデル⇒ダーウィン⇒シュレディンガー⇒モノー⇒…と進歩して来て、今は彼が
その最前線に立ってる、確実にそのうちの一人でしょうね。

研究を行うというのは「そういう事」なのではないかと。



523:¥
17/07/06 15:57:22.61 zEDyZoZZ.net
訂正:

「シュレディンガー⇒モノー」
     ➡ 「シュレディンガー⇒ワトソン・クリック⇒モノー」

もっと他にも「挟まってる人達」が居るのかもしれませんが。



524:¥
17/07/06 16:04:41.55 zEDyZoZZ.net
いやだってですね、例えば確率論ってのはFermatとかLaplaceに始まり、そして:
1.ケインズの「信念の度合い」、まあ選挙速報とか天気予報の降水確率とか。
2.ミーゼスの「あくまでも頻度」、物理測定はコッチかと。
という様な議論が散々あって、それでKolmogorovですからね。でも昨今ではBayesianと
かが応用上では幅を利かせていて、なので明らかに『Kolmogorovでは役不足』ではない
かと(部外者の私でさえ)思いますんで。

だから、誰かが何かをしなきゃいけないと思いますわ。



525:¥
17/07/06 16:09:00.15 zEDyZoZZ.net
それこそ「一生を掛けて数学を行う」んだったら、そりゃ『やりました、出来ました』
だけではアカンですよ。



526:¥
17/07/06 16:12:29.19 zEDyZoZZ.net
どういう風に探せは『Kolmogorovではアカンという文献が出るのか』、そういうのこそ
が価値があります。



527:¥
17/07/06 16:21:09.77 zEDyZoZZ.net
でもその時枝問題というのは、そういう叫び声の(何がしかの)断片なのではないかと。



528:¥
17/07/06 17:04:05.12 zEDyZoZZ.net
そもそもですね。他人から与えられた犬小屋に黙って住むというのは『アカンです』よ、
確実に。そりゃあですね、やっぱし『自分で住む家は自分で創る』という態度で臨むべ
きであり、そういう努力は当然にするべきですわ。(出来上がるかどうかは別ですが、
でもそんな事は「どうでもいい事」なので。)

先ずはやってみるべき、なので。



529:現代数学の系譜 古典ガロア理論を読む
17/07/06 17:08:47.29 qgJA+Zd6.net
>>472-477
¥さん、どうも。スレ主です。

>でもメンデル⇒ダーウィン⇒シュレディンガー⇒ワトソン・クリック⇒モノー⇒…と進歩して来て、

"モノー"はこれか? 知らなかったな~(^^
¥さんの話について行くのは大変ですね(^^
URLリンク(ja.wikipedia.org)
ジャック・モノー
(抜粋)
ジャック・リュシアン・モノー(Jacques Lucien Monod、1910年2月9日パリ ? 1976年5月31日カンヌ)はフランスの生物学者。フランソワ・ジャコブとともにオペロン説を提出し、これによって1965年度ノーベル生理学医学賞を受賞した。生物


530:における調節の分子メカニズムを中心として画期的な業績を挙げ、レジオンドヌール勲章など数多くの賞を受けている。 来歴 動物学を学んで1931年にパリ大学を卒業し、第二次世界大戦中にはレジスタンス運動に参加した。1959年パリ大学に招聘され、1967年にコレージュ・ド・フランスに移り、1971年にはパスツール研究所所長に任命された。 戦後も大腸菌の研究を継続し、これによって1950年代から60年代にかけ、mRNAを介した遺伝情報の発現や、フィードバックによる遺伝子の調節を説明するオペロン説など、すべての生物に共通する分子遺伝学の基礎的概念を確立した。 さらに酵素学の分野でもJ.ワイマン、J.P.シャンジューとともにアロステリック調節モデルを提出している。 『偶然と必然』 科学哲学にも関心が深く、特に著書『偶然と必然(Le Hasard et la Necessite)』(1970年)では現代生物学に基づく自らの世界観を示した。宗教的・唯物論的その他多くの生命観を否定し、当時の思想界に賛否両論をまき起こした。 (引用終り) つづく



531:現代数学の系譜 古典ガロア理論を読む
17/07/06 17:10:28.70 qgJA+Zd6.net
>>479 つづき

>>477
>でもその時枝問題というのは、そういう叫び声の(何がしかの)断片なのではないかと。

¥さん、どうも。スレ主です。
¥さんなりの深読みやね~(^^

まあ、そういう読み方もありか・・
だが、多くの一般読者は、「しっぽ同値類の商集合+KolmogorovでOK」と読んだみたいだし・・(^^

『Kolmogorovではアカン』と時枝先生が思っていたなら
はっきりその主張を書け!よと(^^

だから、『Kolmogorovではアカン』からどうしようとか
『Kolmogorovではアカン』のは、なんでかな~?と

そういう議論なら乗るが
「しっぽ同値類の商集合+KolmogorovでOK」という議論なら、やるだけ時間の無駄だ!と

まあ、そこらは¥さんは、最初から分かって
”見”(ケン。見ているだけ)の立場だったと思いますがね(^^

532:現代数学の系譜 古典ガロア理論を読む
17/07/06 17:22:45.73 qgJA+Zd6.net
>>478
>そもそもですね。他人から与えられた犬小屋に黙って住むというのは『アカンです』よ、
>確実に。そりゃあですね、やっぱし『自分で住む家は自分で創る』という態度で臨むべ
>きであり、そういう努力は当然にするべきですわ。(出来上がるかどうかは別ですが、
>でもそんな事は「どうでもいい事」なので。
>先ずはやってみるべき、なので。

いやはや、志(こころざし)が高いですね(^^
私ら、ほんと、『分厚いコンクリートの壁の向こう側で何か叫んでる』方の人間ですからね
でも、目の前に解くべき問題が出てくれば、取り敢ず何かの形で界を求めないといけない
綺麗な理論の形になるかどうかは別として
それは、Bachelierみたいなことかも知れません(理論がまだないなら、手作りでも、やるかと)

533:現代数学の系譜 古典ガロア理論を読む
17/07/06 17:25:12.81 qgJA+Zd6.net
>>481 訂正

取り敢ず何かの形で界を求めないといけない
 ↓
取り敢ず何かの形で解を求めないといけない

追記
余談ですが、私は、数値解より理論解の美しさが好きなんですよ(^^
数値解にはない美しさが、理論解(あるいは厳密解)にはあると思います(^^

534:現代数学の系譜 古典ガロア理論を読む
17/07/06 17:32:14.46 qgJA+Zd6.net
>>481
>取り敢ず何かの形で解を求めないといけない

話題の将棋からみ
URLリンク(yaneuraou.yaneu.com)
elmoがもたらしたオーパーツについて やねうら王公式サイト 20170523
(抜粋)
WCSC27で優勝したelmoがもたらしたのは、たった一行の革命だった。
交差エントロピーで勾配を求めるとき、普通は次式のようになる。

dsig = eval_winrate ? teacher_winrate;

eval_winrateは、浅い探索(qsearch)の評価値を勝率に変換する関数(シグモイド関数を用いている)で変換したもの。
teacher_winrateは、深い探索(


535:search)の評価値を勝率に変換する関数で変換したもの。 交差エントロピーで勾配を求める場合、上式のように差をとるだけだ。この式の導出については、第4回電王トーナメントのときの白美神のPR文書にある。 http://denou.jp/tournament2016/img/PR/Hakubishin.pdf elmo式の雑巾絞りはこの式を次のように改良した。 dsig = (eval_winrate -t) + 0.5 * (eval_winrate ? teacher_winrate); tはこの局面の手番側が最終的に勝っているなら1(勝率100%)、負けているなら0(勝率0%)とする。 もともと、ゲームの勝敗を用いて強化学習を行うというのは、他の分野ではdeep learning + 強化学習という形でdeep learningの入門記事にもあるような内容だし、将棋ソフトにおいてもなかったアイデアではない。 どちらかと言えば、いまの雑巾絞りのようにRootStrapにするほうが特殊なアイデアである。しかし、RootStrapとして勝敗を用いるというのはなかったのではないかと思う。(Seleneが似たようなことをしていた気はするが) そして、elmoはそれがとてもうまくいくと実証したことも大きい。 興味深いことにelmo式で作成した評価関数は、以前の評価関数とは性質が異なるようで、短い時間(1スレッド1手1秒)では以前の評価関数に負け越すこともある。しかし長い時間になればなるほど以前の評価関数に勝ち越すようになる。(差が開くようになる) elmo式雑巾絞りが新たな扉を開いたことは間違いなさそうだ。 (引用終り)



536:現代数学の系譜 古典ガロア理論を読む
17/07/06 17:36:02.92 qgJA+Zd6.net
>>483 追加

URLリンク(yaneuraou.yaneu.com)
人間の棋譜を用いずに評価関数の学習に成功 やねうら王公式サイト 20170612
(抜粋)
今回、新たに評価関数をゼロベクトルから学習させた。追試できるように記事の前半に手順を記しておく。また、記事の後半には何回目のelmo絞りでどの程度の強さであったかも示す。

elmo絞りを知らない人のために簡単に説明すると、今回、将棋ソフトが人間の棋譜を用いずに勝率の高い形を強化学習でソフト自らが自動的に覚えたということである。
今回、1回に生成している教師の数は5億局面。対局回数で言うと400万局程度であろうか。

私は以前、elmo絞りを用いずにある程度の強さまでは到達出来たのだが、計算資源を湯水の如く消費するので途中で断念してしまった。今回はそのリベンジである。題して「Re : ゼロから始める評価関数生活」、略して「リゼロ」だ。
あらかじめ書いておくが、今回作った一連の評価関数ファイルはすでにやねうら王のGitHubのほうで公開した。興味のある人は評価関数のダウンロードのところにある「リゼロ」からダウンロードして試してもらいたい。

私は棋風を語るほどよく見ていないので本当に強いのかもよくわからないが、ちらっと技巧(2015)相手の対局を見た限り、見たことのない変な囲いから攻めて、よくわからないけど攻めを繋いで、詰みを見つけるのが数手早かった。これがこの評価関数の特徴なのかも知れない。将棋に詳しい人は、是非使ってみて、この記事にコメントをもらえると嬉しい。
人間の棋譜を用いずにプロ棋士レベルの棋力を持つ評価関数を生成するのはかねてより私の研究対象であったが、今回は追試できるように手順を詳しく書き、かつ、そのためのソースコード一式を用意できた。また条件も緩いので普通のPCでも時間さえかければ簡単に再現できるはずだ。
このような形で公開�


537:ナきることを嬉しく思う。そして、これは、もしかすると歴史的快挙なのかも知れない。 まとめ 一言で言うとelmo式の効果が凄すぎた。プロの棋譜を使わない評価関数の栄誉はelmoの作者である瀧澤さんに捧げられるべきである。 (引用終り)



538:現代数学の系譜 古典ガロア理論を読む
17/07/06 17:47:51.52 qgJA+Zd6.net
>>483-484 補足

従来の式:dsig = eval_winrate - teacher_winrate;
elmoの改良式:dsig = (eval_winrate -t) + 0.5 * (eval_winrate - teacher_winrate);

なにがどう改良されたのか、理屈抜きで、ともかくも、elmoは優勝した。下馬評は、圧倒的にポナンザ有利だったのに
で、それで良しと思ってしまうのが、工学系かもね

だが、「0.5にどんな数学的意味があるのか?」、「0.5は理論的にベストなのか?」、「式の形がなぜこうなるのか?」を、数学者なら掘り下げるのかも知れない・・(^^

URLリンク(ja.wikipedia.org)(%E3%82%B3%E3%83%B3%E3%83%94%E3%83%A5%E3%83%BC%E3%82%BF%E5%B0%86%E6%A3%8B%E3%82%BD%E3%83%95%E3%83%88)
elmo (コンピュータ将棋ソフト)
(抜粋)
elmo(エルモ)は、コンピュータ将棋のプログラム。評価関数と定跡が公開されている[1]。

概要
開発者は瀧澤誠。自身は全く将棋を指さない。第27回世界コンピュータ将棋選手権で優勝。初出場の第26回世界コンピュータ将棋選手権は1次予選敗退だった。
elmoは、過去の電王戦でも活躍した強豪AI「Apery」「やねうら王」がベース。elmo同士の対戦を重ねてどのような手を指すと勝率が高いかを調べ、そうした手を選び出せるように評価関数(形勢判断をする際の指標)を調整。その工夫の結果、より正確な形勢判断ができるようになった[2]。
名前の由来はまだまだ強くなるという意味でelectric monkey(電気で動くサル)略してelmoと最初考えていたが、elastic monkey(弾力的な感じ、めげない等の意味)略してelmoに変えると作者の瀧澤は言っている[3]。

脚注
1^ 樽井 秀人 (2017年5月11日). “第27回 世界コンピュータ将棋選手権は新星「elmo」が制覇! ~評価関数と定跡が公開”. やじうまの杜. 2017年5月12日閲覧。 URLリンク(forest.watch.impress.co.jp)
(引用終り)

539:¥
17/07/06 17:59:47.65 zEDyZoZZ.net
その「AI将棋」ってヤツですが、それはDeep learningだから、従って概ねは:
★★★『3段とか4段のNeural netに学習機能が付いてる:離散構造のTree+確率荷重、場合分け』★★★
という風に荒っぽく考えても、そうは外れてませんよね。この学習機能こそがBayesian
であり、確率論の問題ですよね。

もしこれで良ければ、自然な疑問として:
1.そういうものは、分類できるのか。つまり「AI将棋1」と「AI将棋2」の同値関係。
2.無限時間の学習をさせれば、そういう「AI将棋」は全て収束するのか。
3.その収束先は、全て同値か。
4.こういうものは『客観的と言える』のか。
という様な事は、ごく自然に気になりますが。



540:¥
17/07/06 18:08:54.52 zEDyZoZZ.net
そしてその内部の評価関数として「違うモノを使う」として、AI1とAI2を構成した時、
これらに無限時間の学習をさせたとして、ではその収束先は『同じにナル』のか否か?



541:¥
17/07/06 18:17:20.28 zEDyZoZZ.net
この問題は生物進化では、こういう問題と概ねは同じです。即ち:
★★★『離れ小島1と離れ小島2に、全く同じ原生種が居るとします。この時に、
      「この二つの離れ小島の外的環境が全く等しい」のであれば、何万年かが
         経った時に、この二つの離れ小島に居る生物種とその分布は全く同じか?』★★★
という問題と対応するでしょう。

だからこういう問題は『進化ゲーム理論にも対応物がある』と思いますが。



542:現代数学の系譜 古典ガロア理論を読む
17/07/06 18:45:05.97 qgJA+Zd6.net
>>472
>例えば「山中さん」を考えるとですね、彼の目の前には「相手とすべき細胞の組織分化」
>が、まあ(ずっと遠くで、雲の上から)『叫び声を上げてる』んでしょうね。相手は猛烈
>に複雑な対象だからそりゃ大変であり、それこそ数学者の苦悩なんてメじゃないでしょう。

下記などが、数学との絡みでしょうかね?(^^
URLリンク(www.ism.ac.jp)
ゲノムなどの遺伝情報の解析から生命の進化の謎を探る:研究室訪問 No.119:統計数理研究所 足立 淳 データ科学研究系 構造探索グループ准教授
(抜粋)
 子供のころから自然が好きだった。神奈川で育ち、海、山、川の自然の中で遊んだ。中高校時代は父親に連れられ山に登り、大学時代は探検部に入りヒマラヤにも遠征した。理科や数学が好きで、システム的なことに興味を持ち工学部へ進んだ。
学部ではすでにコンピューターを当たり前のように使っており、統計数理研究所の研究者から解析プログラムづくりのアルバイトの声がかかった。長谷川政美教授(現名誉教授)の研究でDNAのデータ解析を手伝ったちょうどゲノムなどの遺伝情報が分かり始めたころである。
足立はその時、「生物進化の研究は新時代に突入し、劇的に発展する」と確信した。自らの進路を制御理論から遺伝情報の解析へ方向転換し、統数研に併設された総合研究大学院大学統計科学専攻の第2期生となった。こうした足跡が実は早い段階での研究成果につながっていく。

アミノ酸配列から系統樹を最尤推定する方法を開発

 かつて生物進化の系統樹を遺伝子レベルで調べる方法はDNAの4つの塩基配列から推定するしかなかった。1980 年代後半、この方法で人間はチンパンジーに近いと証明された。しかし、4つの文字しかないDNAでは限界がある。過去に何回か突然変異を起こし多重置換をしていると、その足跡は消えてしまい、大昔の生命の起源に迫ることは難しい。

 足立はアミノ酸配列に注目した。アミノ酸は20 種ある。DNAの3塩基に対応し、生物の機能を担うタンパク質を構成している。DNAと比べれば種類が多く進化速度も遅いので過去の変異の記録が残りやすい。アミノ酸配列を比較することで生物のルーツに迫ることができると考えた。

つづく

543:現代数学の系譜 古典ガロア理論を読む
17/07/06 18:47:06.26 qgJA+Zd6.net
>>488 つづき

 この方法は実は世界中の研究者が着目していたが、まだ実用的なモデルがなかった。
足立は、統計数理研究所の大型計算機を使って大量の遺伝子データを分析し、長谷川教授と岸野洋久元研究員(現東大教授)の指導を受けながら遺伝子のアミノ酸配列がどのアミノ酸に変わっていくかを統計的に推定し、アミノ酸置換モデルをつくった。これによってアミノ酸レベルで生物進化の系統樹を推定することが可能となった。

 その結果、真核生物の起源など大昔のことまで調べることができるようになった。これが足立の初仕事であり、博士論文「分子進化のモデリングと分子系統樹の最尤推定」の1章になった。

 この博士論文と公開したプログラムには世界中から反響があった。足立はこの研究成果をもって1997年に英国オックスフォード大学動物学科の研究員になった。ダーウィン以来の遺伝学の本家本元で足立の研究は注目された。

 その後、帰国して理化学研究所ゲノム科学総合研究センターの研究員をしていた時、統計数理研究所の公募に応じ、2003 年2月に助教授に就任した。ここでも初期のころに画期的な研究に携わった。

 現在の専門は、生物を遺伝情報などのシステム面から研究する情報生物学と、生物の進化を形


544:態ではなくゲノムなどの分子情報から研究する分子進化学である。いまは分子進化のモデリング、分子系統樹推定プログラムの開発に取り組み、今後に向けてゲノム構造の進化を解明しようとしている。 「まだ未知な部分が多い生命進化の解明は非常な楽しみ」  ここへ来て新たに浮かんだ課題がある。「当初はゲノムが読めれば全部分かるのではないかという 楽観論があったが、知らない文明の知らない言葉で書かれた百科事典を発掘したようなもので、その読み方はまだ一部しか分かっていない。 それほど生命は複雑で未知の部分が残されているのですが、その解明は非常な楽しみです。ある生物の機能が獲得されたのは、どの突然変異に起因しているのか、それを調べていくのが次の目標です」。  進化の歴史的な流れは分かってきたが、なぜそうなったかというメカニズムは分からない。今後はゲノムなどの遺伝情報から生物進化のメカニズムを解明したい、と新たな意欲を見せる。まさに生命の神秘への挑戦である。 (引用終り)



545:132人目の素数さん
17/07/06 19:15:10.40 oyrpC7ft.net
>>463-464
おっちゃんが日本語の文章読めないだけだろw

ほら目でみないとわからない
オコチャマ達のために図示してやったぞ

○ 代表元との不一致箇所
● 代表元との一致箇所

3列じゃ淋しいから、6列に増やしてみた

s1 ○●●●●●●●●
s2 ○○○○●●●●●
s3 ●●●●●●●●●
s4 ○○○●●●●●●
s5 ○○○○○●●●●
s6 ○○●●●●●●●

決定番号が最大値(6)でない列(s5以外)を選んだ場合 
(確率5/6)
→選んだ列(s5以外)の6番目の箱を開ける
(★ 代表元と一致するので予測成功)

s1 ○●●●●|★|●●●
s2 ○○○○●|★|●●●
s3 ●●●●●|★|●●●
s4 ○○○●●|★|●●●
__ -----+-+---
s5 ○○○○○|●|●●●
__ -----+-+---
s6 ○○●●●|★|●●●


決定番号が最大値(6)の列(s5)を選んだ場合
(確率1/6)
→s5の5番目(s5以外の列の決定番号の最大値)の箱を開ける
(☆ 代表元と不一致なので予測失敗)

s1 ○●●●|●|●●●●
s2 ○○○○|●|●●●●
s3 ●●●●|●|●●●●
s4 ○○○●|●|●●●●
__ ----+-+----
s5 ○○○○|☆|●●●●
__ ----+-+----
s6 ○○●●|●|●●●●

たったこれだけのことが読み取れないとか
頭蓋骨に豆腐でも詰まってんのか?

546:¥
17/07/06 19:23:04.98 zEDyZoZZ.net
私の見解を述べれば、恐らくは以下の三つが重要かと。即ち:
1.生物進化として、どういう数学的モデルが作れるか。ダーウィニズムの説明。
2.同じゲノムの集合に制御された、全く異なる周期解を調べる。発生と分化。
3.ゲノム解析の結果を『暗号として読む』という事。

この最初のヤツは(進化ゲーム理論の問題だろうから)いいとして、この二つ目が:
★★★『例えば山中因子で初期化したアトに、各個別の組織に発生分化する、その仕組み。』★★★
であり、そしてこの三番目こそが、恐らくは今一番ホットで、しかも「生データが大量
に存在してる」という、遺伝情報の暗号解読の問題ですね。

コレは実際に今問題になってる「ビッグデータをスパコンで何時間もかけて処理する」
という、所謂分子生物学のドライな研究(試験管でやるのをウエットな研究と言う)だ
そうです。一台数億円するというNGS(次世代シーケンサー)からのデータを統計処理
してゲノム情報を読む際に、既存のソフトが何種類もあってそれを使うという形式に整
備されてるそうですが、でもこういう部分には『何がしかの数学の問題が潜んでる』と
は思いますがね。

但しこれがKolmogorovの公理系の一般化と直接に関係してるかどうかは知りませんが。
だから先ずは「数理統計の問題」なんだろうけど。まあ暗号解読だから、古くはTuring
がやった『


547:Bayesianな何か』なんでしょうが。 ¥ 追加:こういう話になると私はド素人なので、今後は黙って見るだけにしときますが。



548:132人目の素数さん
17/07/06 19:42:04.48 uwHjkFGK.net
>>488
玉突きを同じにするのは不可能でしょね
機械論が抱える問題だと思います

549:132人目の素数さん
17/07/06 20:00:44.48 mIOkhtK0.net
引用馬鹿は間違いまで忠実に引用するね

550:132人目の素数さん
17/07/06 20:05:33.91 oyrpC7ft.net
>>437
この話は数学界では常識らしい
URLリンク(style.nikkei.com)

551:現代数学の系譜 古典ガロア理論を読む
17/07/06 20:07:03.20 qgJA+Zd6.net
>>486-487
> 4.こういうものは『客観的と言える』のか。
>という様な事は、ごく自然に気になりますが。
>そしてその内部の評価関数として「違うモノを使う」として、AI1とAI2を構成した時、
>これらに無限時間の学習をさせたとして、ではその収束先は『同じにナル』のか否か?

¥さん、どうも。スレ主です。
>>484-485の話は、将棋みたいなある意味単純(例えば、9x9のマス目で、コマ数 20x2(=40)、平均約100手で決着)な、対象ですから・・
それに、白黒というか、善し悪し(勝ち負け)がはっきり出る話

で、ここから出発して、自然言語とかいろいろな社会の出来事への応用(電話のAI自動応答など)
でも、自然言語になると、将棋などと異なり、良否の判断も将棋ほどはっきりしないし
まだまだ、これからですよね

それはそうと、elmoの面白さは、優勝候補のPonanzaが、
「クラウドサービス「高火力コンピューティング」によるCPU1092Core(Intel Xeon)、GPU128基(NVIDIA Titan X)をハードウェアとして揃え、開発陣も合計10人まで増え」
「プリファード・ネットワークス社のライブラリ「Chainer」を利用してディープラーニングを導入」
とかやったけど、それをひっくり返したのが”優勝したelmoがもたらしたのは、たった一行の革命だった”>>483ってところ
まだまだ、AI黎明期ですよね(^^

URLリンク(ja.wikipedia.org)
ponanza
(抜粋)
ponanza[注 1](ポナンザ)は、コンピュータ将棋のソフトウェアである。

2017年の第27回世界コンピュータ将棋選手権では、プリファード・ネットワークス社のライブラリ「Chainer」を利用してディープラーニングを導入した 「Ponanza Chainer[1]」としてエントリーし、
さくらインターネットのクラウドサービス「高火力コンピューティング」によるCPU1092Core(Intel Xeon)、GPU128基(NVIDIA Titan X)をハードウェアとして揃え、開発陣も合計10人まで増えた。
この大会では優勝したelmoに二次予選と決勝で2戦して2敗し準優勝に終わり、連覇も止まった。

552:現代数学の系譜 古典ガロア理論を読む
17/07/06 20:12:56.85 qgJA+Zd6.net
>>488
>★★★『離れ小島1と離れ小島2に、全く同じ原生種が居るとします。この時に、
>      「この二つの離れ小島の外的環境が全く等しい」のであれば、何万年かが
>         経った時に、この二つの離れ小島に居る生物種とその分布は全く同じか?』★★★

¥さん、どうも。スレ主です。
関連箇所、下記ですね
URLリンク(www.ism.ac.jp)
ゲノムなどの遺伝情報の解析から生命の進化の謎を探る:研究室訪問 No.119:統計数理研究所 足立 淳 データ科学研究系 構造探索グループ准教授
追加(抜粋)

ゲノム構造の進化の解明から生命の進化のメカニズムに迫る

共同研究者たちと哺乳類の進化を調べるうち、まったく違うルーツを持ちながらも大陸別に同じような環境で成長した生物の中に同じような形態をしているものがいることが分かった。

形だけを見ると同じ種と思えるが、遺伝情報からは別ものだった。
哺乳類の進化と大陸分裂、大陸移動が関係していたのである。

その前には自らが開発したアミノ酸配列から系統樹を推定する方法で、大型の歯クジラであるマッコウクジラは同じ大型のヒゲクジラではなく、小型のイルカと遺伝的に近いことを科学的に証明した。
(引用終り)

553:¥
17/07/06 20:22:37.12 zEDyZoZZ.net
客観的の意味が違います。私が意味するのは、例えば:
★★★『どんな人間がその「AI将棋」と対戦しても、そ�


554:フ対戦者は「全く同じ強さ」を感じるのか。』★★★ という趣旨です。 だからコレは「Turing testの意味」と考えて下さい。即ち: ★★★『「AI将棋1」と「AI将棋2」とはモデルとして同値であるとは:        どんな人間が対戦しても「AI将棋1」と「AI将棋2」とは区別が出来ない。』★★★ と定義して、とします。 つまりこの問題は「この同値類の定義」は(人間を経由せずに)数学の概念だけで定義 が可能か、という質問です。 ¥



555:¥
17/07/06 20:31:22.64 zEDyZoZZ.net
別の事例を挙げれば、例えば統計学で:
★★★『「集団1」と「集団2」とは、平均値が同じである ⇒ この二つは同じ分布を持つ』★★★
は、当然にウソですよね。これは「安っぽい実例」ですが。



556:¥
17/07/06 20:44:05.39 zEDyZoZZ.net
別の表現をすれば:

この「AI将棋」に関して、その『強さ、弱さ』というのは(当然に)ひとつの数値だけで
表現できるものではないし、そもそも(有限個の)「数値の組」というパラメータで記述
できるとすれば、それは『ちょっと無理っぽい』ですよね


ですが、この「AI将棋」を有限段のNeural netだとすれば、それは所詮は『数値の有限集
合で記述してる』という事にナルでしょう。こういうのはちょっと気持ち悪くはないです
か、という疑問です。

尤も画像処理とかを考えれば、人間の感覚なんて『所詮は有限次元のベクトル空間』と
いうのは、それが「工学部の世界だ!」という事なのかも知れませんが。まあ実際には
「AさんとBさんは同一人物」というのは、有限次元のベクトルの値『だけ』で判定して
るのは明らかですが。



557:132人目の素数さん
17/07/06 20:44:09.46 BTQmeDOQ.net
決定番号に上限は無い
そんなことは皆百も承知で時枝解法は成立すると言っている
どうしようもない馬鹿

558:現代数学の系譜 古典ガロア理論を読む
17/07/06 20:59:14.43 qgJA+Zd6.net
>>492
>追加:こういう話になると私はド素人なので、今後は黙って見るだけにしときますが。

¥さん、どうも。スレ主です。
私もド素人ですが、検索でヒットしたので、貼り付けておきます

URLリンク(www.ospn.jp)
フリーソフトによるゲノム科学における ビッグデータ解析の実際 2013/02/26 石井一夫 東京農工大学 農学系ゲノム科学人材育成プログラム

<こちらはおまけ>
URLリンク(www.tfc.tohoku.ac.jp)
文部科学省委託事業「数学・数理科学を活用した異分野融合研究の動向調査」調査報告シンポジウム
URLリンク(www.tfc.tohoku.ac.jp)
数学・数理科学を活用した異分野融合 - Tohoku Forum for Creativity はじめに、目次、序章
URLリンク(www.tfc.tohoku.ac.jp)
第1章 数学・数理科学を活用した異分野融合研究の促進についての意識調査

559:現代数学の系譜 古典ガロア理論を読む
17/07/06 21:29:30.94 qgJA+Zd6.net
>>498-500
¥さん、どうも。スレ主です。

>つまりこの問題は「この同値類の定義」は(人間を経由せずに)数学の概念だけで定義
>が可能か、という質問です。
>この「AI将棋」に関して、その『強さ、弱さ』というのは(当然に)ひとつの数値だけで
>表現できるものではないし、そもそも(有限個の)「数値の組」というパラメータで記述
>できるとすれば、それは『ちょっと無理っぽい』ですよね

うまく説明できないのですが、チェスの話をすると、チェスではレーティングという数値があります。
将棋でも、現在は一部でそれを応用しています

URLリンク(ja.wikipedia.org)
(抜粋)
イロレーティング (Elo rating) とは、チェスなどの2人制ゲームにおける実力の測定値(レーティング)の算出法である。「イロ」とはこの算出法を考案した、ハンガリー生まれでアメリカの物理学者であるアルパド・イロ(英語版)に由来する。
チェスでは国際チェス連盟の公式レーティングに採用されるなど、強さを示す指標として用いられている。

算出方法
イロレーティングでは、次の3点を基本とする。
ゲームの結果は一方の勝ち、一方の負けのみとし、引き分けは考慮しない(0.5勝0.5敗と扱うものとする)。
2


560:00点のレート差がある対局者間では、レートの高い側が約76パーセントの確率で勝利する。 平均的な対局者のレートを1500とする。 3人の対局者 A,B,Cについて Aが Bに勝利する確率を E_{AB}、 Bが Aに勝利する確率を E_{BA}などと定める。対局者間の勝率について次のような仮定を置く。 (引用終り) つづく



561:現代数学の系譜 古典ガロア理論を読む
17/07/06 21:31:19.40 qgJA+Zd6.net
>>503 つづき

下記おまけ
URLリンク(ja.wikipedia.org)
コンピュータチェス

レイティング・リスト
Chess Engines Grand Tournamentのレイティング・リスト(2007年11月)のトップ3は、1位がRybka 2.3.2a x64 4CPU (3100)、2位がZappa Mexico x64 4CPU(3009)、3位がDeep Shredder 11 x64 4CPU(2984)である。

歴史

2009年8月には、スマートフォンのHTC Touch HDに搭載された「Pocket Fritz 4」がアルゼンチンで開催されたカテゴリー6(参加者のレーティング平均が2376以上2400以下。FIDEマスターの上位からIMの下位相当の水準)の大会に出場し10戦中9勝1分の戦績を収め、グランドマスター級の評価が与えられた。
Pocket Fritz 4は1秒間に2万局面を読むが、ディープ・ブルーが1秒間に2億局面を読むのに比べると演算能力は1万分の1に過ぎず、ソフトの進化を印象づけるものとなった。

フリッツ
洗練されたインターフェイスが特徴の統合型ソフト。1995年に開発中のディープ・ブルーに勝利したことで一躍有名になった。
前述した通り、現在では世界王者ですら勝てないレベルとなっている。
(引用終り)

<参考>
URLリンク(ja.wikipedia.org)
(抜粋)
チェスは、2人で行うボードゲーム、マインドスポーツの一種である。先手・後手それぞれ6種類16個の駒を使って、敵のキングを追いつめるゲームである。
(引用終り)

562:現代数学の系譜 古典ガロア理論を読む
17/07/06 21:34:05.48 qgJA+Zd6.net
>>503 補足

>チェスの話をすると、チェスではレーティングという数値があります。

コンピュータソフト同士を対戦させて、その勝率から、各ソフトのレーティングの数値が計算できます。レーティングの数値は一つです

563:132人目の素数さん
17/07/06 21:34:24.35 /iMOs2v3.net
>>461
> 決定番号の上限はないから

上限がないという性質を用いて決定番号を増やすことが可能なのは
ある無限数列Anを選んだときの決定番号がDであったとすると決定番号がD+1となる「Anとは異なる」無限数列Bn
が存在するから選ぶ無限数列をBnに変更すれば決定番号をD+1にできるから

数を箱にいれて閉じた後にどうやって他の数列に変更するの?
(変更できれば数当ての結果はコントロールできるので実にスレ主らしいロジックですが)

564:132人目の素数さん
17/07/06 22:36:21.26 uwHjkFGK.net
>>488
島ごとに生物相が違って、生体認証みたいに島の模様を特定できるかもしれませんね
将棋の棋譜なんかも生体認証みたいに模様を特定できませんかね

565:現代数学の系譜 古典ガロア理論を読む
17/07/06 23:30:01.73 qgJA+Zd6.net
>>495
"働き方・学び方 おとなの数学
スポーツの最高記録は永遠に出続ける
桜美林大学教授 芳沢光雄 2012/8/7"か
URLリンク(ja.wikipedia.org)
(抜粋)
芳沢 光雄(1953年1月23日[1] - )は、日本の数学者。専門は数学・数学教育。曽祖父は元内閣総理大臣の犬養毅で、祖父は元外務大臣の芳澤謙吉。元国連難民高等弁務官の緒方貞子はいとこ。



566:歴 東京都生まれ慶應義塾幼稚舎、慶應義塾普通部、慶應義塾高等学校、学習院大学理学部数学科卒業。 数学 数学研究の専門は置換群と組合せ数学。かつての置換群論の大家Wielandtの学位論文を約40年ぶりに大きく改良した有限多重可移置換群の論文 (Osaka J. Math. vol. 16 (1979) 775?795) が学位論文。 (引用終り) けど、おかしくないか? <記事より引用> ”まずは新しいスポーツ競技を創ったと仮定しよう。人類の運動能力が変わらないとすると、最初の年に最高記録が出る確率は、1(100%)である。新しいスポーツなのだから、最初の記録が最高記録となるのは当たり前ではある。  2年目にタイ記録を含む最高記録が出る確率は1/2以上である。それは、1年目も2年目も同じ能力で競技に臨むからである。” <疑問> 1.まず、1年の数学的意義が不明。1年に1回の試技(試合)? 1年刻みで考えるより、試技の回数で決めるべきでは? 2.スポーツ競技の内容や記録についての具体的記載が一切ない。これも、疑問だ   例えば、話題になった藤井聡太の29連勝に絡みで、「連勝記録」を考えてみよう。勝率8割なら、10連勝する確率は0.107にすぎない   だから、「連勝記録」の再現は、確率的に難しい。それに、連勝の確率計算なら、勝率ベースの式があるだろ?   一方で、女子体操で10点満点がしばしば出ることがある。今年10点満点として、来年も10点満点が出るかどうかだ。   これだって、年で計算する話じゃない!何回の試技で10点満点が出るかという計算が、正当な確率計算じゃないのか? 3.で、芳沢の主張なら、「スポーツ競技の内容や記録について無関係な確率計算可」という数学的な証明がいるだろう?大数の法則みたく?   が、大数の法則なら、1回や2回の試技の少ないところでは、それ言えないだろう?



567:現代数学の系譜 古典ガロア理論を読む
17/07/06 23:31:25.83 qgJA+Zd6.net
>>507
どうも。スレ主です。
レスありがとう

模様の特定がいまいち理解できないのだが(^^

568:現代数学の系譜 古典ガロア理論を読む
17/07/06 23:37:12.02 qgJA+Zd6.net
>>508 追加

<記事より引用>追加
”人類の運動能力が横ばいとしても、スポーツ競技ではタイ記録を含む最高記録は永遠に出続けることを数学的に説明したい。”

<疑問>追加
・”タイ記録を含む”というなら、それ定義の問題だろ? 「人類の運動能力が横ばい」の定義。 「人類の運動能力が横ばい」=「タイ記録再現可能」というのが、普通の解釈だろ?
(繰り返すが、数学の問題じゃない。定義の問題だろ?)

569:132人目の素数さん
17/07/07 00:07:15.53 G185TVLs.net
工学屋は刻みの物理単位が本質だと考えて吠える

「なぜ1年刻みなのか?それは数学的ではない!」

570:132人目の素数さん
17/07/07 01:11:37.31 NDA+kZzb.net
決定番号に上限が無いことと、決定番号=∞であることが区別できないアホ

571:132人目の素数さん
17/07/07 03:24:11.18 ImTkPs21.net
>>491
おっちゃんです。
>おっちゃんが日本語の文章読めないだけだろw
では、改めて聞くが、そもそも
>例えばkが選ばれたとせよ.
>s^kの決定番号が他の列の決定番号「の」どれよりも大きい確率は「…」に過ぎない
の部分の
>s^kの決定番号が他の列の決定番号「の」どれよりも大きい確率
とは、一体
1、(単純に受け取って) s^kの決定番号が他の列の決定番号「の」どれよりも大きい(大きくなる)確率、
2、「100個の決定番号の任意の相異なる2つを互いに比較した結果」、
   (を補って解釈して読んだときの)
   s^kの決定番号が他の列の決定番号「の」どれよりも大きい確率
の2つのうち、どちらの確率のことを指しているんだ?
1のように解釈すれば、確率は単純に「99/100」と求まる。
私は2のように解釈したんだが。

572:132人目の素数さん
17/07/07 03:33:50.97 ImTkPs21.net
>>491
>>513の下から2行目について訂正:
単純に「99/100」と求まる。 → 単純に「1/100」と求まる。

573:132人目の素数さん
17/07/07 06:14:46.99 e6w2ZTtZ.net
>>513
>1、(単純に受け取って)
>s^kの決定番号が他の列の決定番号「の」どれよりも大きい(大きくなる)確率、

これしかないだろw

574:132人目の素数さん
17/07/07 07:21:28.38 ImTkPs21.net
>>515
それじゃ、
>s^kの決定番号が他の列の決定番号「の」どれよりも大きい確率
の部分は単純に読んでいいのか。
余計な補足をして読んだ私の考え過ぎだった訳だな。

575:現代数学の系譜 古典ガロア理論を読む
17/07/07 08:09:13.19 G/3PgbQm.net
>>513
おっちゃん、どうも、スレ主です。
おっちゃんも、時枝記事の胡散臭さに、気付いたようだね(^^
よかった、よかった~(^^

1.>>118に書いたが、Sergiu Hart氏のPDF で P2
 ”When the number of boxes is finite ”で、”by choosing the xi independently and uniformly on [0, 1] ”なら、当たらないよと
 つまり、意訳すれば、「有限の箱で、区間 [0, 1]から、任意の実数を入れるとすれば、当てられない”と
 じゃ、なんで、可算無限個なら当てられるんだ? その数学的な説明が、しっかりできないといけないが、できないだろう?
2.時枝記事>>12で、例えば数列のs = (s1,s2,s3 ,・・・,sn ,・・・)で、snが確率99/100で的中したとする。
 ビデオの逆回しのように、時間を戻すと、snに数を入れるとき、”by choosing the xi independently and uniformly on [0, 1] ”とすれば、いままで入れてきた箱や、これから入れる箱の数とは、独立なはず。
 だから、その時点では的中確率0(ゼロ)だ。
 ところが、時間が経って、箱の列が伸びて、可算無限個になったら、確率が変化して99/100か? それはおかしいだろう?
3.なお、決定番号=∞と表現するかどうかは、時枝記事>>12”箱が,可算無限個ある”を表現するとき、箱の数として∞を使うか、あるいは自然数の集合N全体に等しいとするかの表現法に依存する
 例えば、>>235 に書いたように、平場 誠示先生 Lebesgue 積分論 URLリンク(www.ma.noda.tus.ac.jp)
 p.6 で R~ = R∪{±∞}(拡張実数) を導入しています。(参考)URLリンク(ja.wikipedia.org)
 拡張実数を導入する方が、記述が簡潔になる。同じことは、拡張実数を使わなくても言えるが、記述が長くなる
 誠示先生「a ∈ R (有限値) に対して、a ×∞ = ∞ (a > 0)」とある。
 だから、a=1/2として、可算無限個の箱を、前半と後半に分けて、後半にしっぽの部分があるとすると、前半にも可算無限個の箱があるよね
4.まあ、>>118 Sergiu Hart氏のPDFの P2の箱有限の場合と、時枝>>12の可算無限個の箱との差が、上記3であり、この辺りがトリックのネタだろうと
 それが、パズルの落ち>>118だろう

どう?

576:132人目の素数さん
17/07/07 09:42:55.35 ImTkPs21.net
>>517
それらの pdf とかがどっかにいったし、今まで読んだことなく、内容が分からない。
pdf を探すのも面倒でしたくない。

577:132人目の素数さん
17/07/07 09:57:53.54 ImTkPs21.net
>>517
まあ、番号は有限な値で、決定番号はその定義から番号だから、
決定番号は有限な値になる。スレ主が書いた3について、
「決定番号=∞と表現する」ことは出来ない。

578:現代数学の系譜 古典ガロア理論を読む
17/07/07 11:41:53.63 MLC335zj.net
>>518
おっちゃん、どうも、スレ主です。
Sergiu Hart氏のPDF URLリンク(www.ma.huji.ac.il) >>28より だな
まあ、PDF読まなくても良いよ

579:現代数学の系譜 古典ガロア理論を読む
17/07/07 11:43:31.13 MLC335zj.net
>>519
おっちゃん、どうも、スレ主です。

>まあ、番号は有限な値で、決定番号はその定義から番号だから、
>決定番号は有限な値になる。スレ主が書いた3について、
>「決定番号=∞と表現する」ことは出来ない。

別に構わんが、>>12 時枝記事 「箱がたくさん�


580:C可算無限個ある.箱それぞれに,私が実数を入れる. 」についてはどう? 1)可算無限個の箱に、番号を振ることができる 2)番号は、自然数として良いだろう。可算無限個の箱の集合 VS 自然数Nの集合で対応が取れる。任意のn∊Nで、nは有限だ。が自然数の集合Nは加算無限だ 3)任意の決定番号k∊K(決定番号の集合)として、kは有限だが、決定番号の集合Kは、加算無限だよ。わかる?



581:現代数学の系譜 古典ガロア理論を読む
17/07/07 11:49:00.47 MLC335zj.net
>>521 補足
おっちゃん、どうも、スレ主です。

「決定番号=∞と表現する」かどうかは、それぞれの流儀だ
問題は、決定番号が集合として、有限なのか? それとも、無限なのか? 当然無限集合だろう

任意のn∊Nで、nは有限だ。が自然数の集合Nは加算無限だよ
同様に、任意のr∊Rで、rは有限だ。が実数の集合Rは連続無限だよ

582:132人目の素数さん
17/07/07 15:22:41.22 ImTkPs21.net
>>521
ID が変わっているんだが。
>3)任意の決定番号k∊K(決定番号の集合)として、
>kは有限だが、決定番号の集合Kは、加算無限だよ。わかる?
「箱を開ける人(あなた)」ではなく、「私」さんが非可算個ある実数の中から
可算無限個の実数を自由に選んで可算無限個の箱に入れている。
決定番号は>>12で定義されている同値関係「~」を満たす数列に対して定義され、
任意の2以上の正整数nについて m≧n のとき s_m= s'_m となるような実数列
s=(s_1, s_2, s_3 ,…),s'=(s_1, s_2, s_3 ,…)∈R^N は非可算個ある。
そして、決定番号は、>>12のように、このような同値関係を満たす
実数列sに対して定義されるから、決定番号の集合は非可算である。
唯一の例外は n=1 のときだけ。このときのみ、決定番号の集合は可算無限になる。

>>522
>「決定番号=∞と表現する」かどうかは、それぞれの流儀だ
∞は有限の値ではないから、「決定番号=∞」とは表せない。

583:132人目の素数さん
17/07/07 15:37:40.59 ImTkPs21.net
>>521
>>523の訂正:
2以上の正整数n → 正整数n
あと、例外となり得る筈の n=1 のときも、1つの実数列の選び方は非可算通りあるから、
決定番号の集合は非可算になる。つまり、前半の一番下の行
>唯一の例外は n=1 のときだけ。このときのみ、決定番号の集合は可算無限になる。
の部分は削除。

584:132人目の素数さん
17/07/07 15:50:27.83 ImTkPs21.net
>>521
>>523の前半は取り消し。>>524も取り消し。
同値関係~の同値類と正整数の全体Nには全単射があるな。だが、>>523の後半
>>522
>>「決定番号=∞と表現する」かどうかは、それぞれの流儀だ
>∞は有限の値ではないから、「決定番号=∞」とは表せない。
はそのまま。>>521では何がいいたいのか分からん。

585:132人目の素数さん
17/07/07 15:55:04.61 ImTkPs21.net
>>521
>>525
>同値関係~の同値類と正整数の全体Nには全単射がある

>同値関係~の同値類と正整数の全体N「との間」には全単射がある
の間違い。

586:132人目の素数さん2017
17/07/07 16:04:11.37 ImTkPs21.net
>>521
>>525(>>526)の
>同値関係~の同値類と正整数の全体Nには全単射がある

>同値関係~の同値類「の全体からなる集合」と正整数の全体N「との間」には全単射がある
の間違い。

587:現代数学の系譜 古典ガロア理論を読む
17/07/07 16:09:00.92 MLC335zj.net
>>523-524
おっちゃん、どうも、スレ主です。

>ID が変わっているんだが。

いま、別の場所に来ているのでIDが変わったんだ

ところで本題
s=(s_1, s_2, s_3 ,…),s'=(s_1, s_2, s_3 ,…)∈R^N は非可算個ある。
 ↓
s=(s_1, s_2, s_3 ,…,s_m,s_m+1,s_m+2,…),s'=(s'_1, s'_2, s'_3 ,…,s_m,s_m+1,s_m+2,…)∈R^N は非可算個ある。
ってことかな。
s'の「 ’」を追加した

で、それで正解というか、私の考えと同じだ

>決定番号の集合は非可算である。

正確には、ある決定番号kとなる同値類の集合の元が、非可算個あって重複している。
重複しているところを集約して1と数えると、当然、それは加算無限だね

>∞は有限の値ではないから、「決定番号=∞」とは表せない。

それは構わない。本質ではない。
決定番号が集合として、重複しているところを集約して1と数えても、それは加算無限集合だと。
これが、ことの本質だね

つづく

588:現代数学の系譜 古典ガロア理論を読む
17/07/07 16:10:57.60 MLC335zj.net
>>528 つづき

だから、決定番号の集合をKとして、変数k∍K をとると、変数kは、[1,∞) (半開区間)の整数だと
これが、ことの本質だね

589:132人目の素数さん
17/07/07 16:19:02.15 ImTkPs21.net
>>529
>だから、決定番号の集合をKとして、変数k∍K をとると、変数kは、[1,∞) (半開区間)の整数
当然のことをいっているに過ぎないんだが、それでどうした。

590:132人目の素数さん
17/07/07 16:26:22.78 ImTkPs21.net
>>529
まあ、正確にはkは「整数」ではなく「整数の変数」扱いなのだが。

591:132人目の素数さん
17/07/07 16:28:45.60 ImTkPs21.net
>>529
より正確にはkは「整数」ではなく「正整数の変数」扱い。

592:現代数学の系譜 古典ガロア理論を読む
17/07/07 16:40:22.82 MLC335zj.net
>>530
おっちゃん、どうも、スレ主です。

>>だから、決定番号の集合をKとして、変数k∍K をとると、変数kは、[1,∞) (半開区間)の整数
>当然のことをいっているに過ぎないんだが、それでどうした。

そう、当然のことをいっているに過ぎないんだが
それが、理解できない人たちがいるってことなんだ

593:132人目の素数さん
17/07/07 17


594::28:09.90 ID:HAjcAH71.net



595:132人目の素数さん
17/07/07 19:17:52.81 e6w2ZTtZ.net
>>508
>けど、おかしくないか?
別に 何もおかしくない

>1.まず、1年の数学的意義が不明。
>1年に1回の試技(試合)?
>1年刻みで考えるより、試技の回数で決めるべきでは?

それ、些末な言い掛かりだよ

>2.スポーツ競技の内容や記録についての
>具体的記載が一切ない。これも、疑問だ

それ、全然影響しないから
具体的には、1年間の記録の分布がいかなるものであっても
毎年の分布が同じであればいい

>3.で、芳沢の主張(通り)なら、
>「スポーツ競技の内容や記録について無関係な確率計算可」
>という数学的な証明がいるだろう?

もちろん、数学的に証明できる
毎年の分布が同じだから、年を入れ替えても同じ
したがって、記録の具体的な値を無視して記録の順序構造だけの順列で考えてよい
n個の記号による順列n!について、最大値更新回数の平均をとると1/2+・・・+1/nになる

ウソだと思うなら実際に計算してごらん

596:132人目の素数さん
17/07/07 19:22:25.71 e6w2ZTtZ.net
>>535
abc・・・についてa<b、b<c、・・・という順序がついてるとする

ab 更新1回
ba 更新0回
平均 1/2回

abc 更新2回
bac 更新1回
acb 更新1回
bca 更新1回
cab 更新0回
cba 更新0回
平均 5/6(=1/2+1/3)回

597:132人目の素数さん
17/07/07 23:15:56.08 2ZM5XsPX.net
>>528-529 >>533
> 決定番号が集合として
決定番号「全体」と書いた方が良いですよ

決定番号全体の集合 {d1, d2, ... , dn, ... }は添字を見れば明らかなように
自然数全体の集合{1, 2, ... , n, ... }と1対1に対応するので可算無限濃度であり上限はない

集合D = {d1, d2, ... , d100}(diは任意の自然数)は自然数全体の集合とは1対1に対応しない
添字を見れば明らかに{1, 2, ... , 100}と1対1に対応するので濃度は100で有限である

k = max{d1, d2, ... , d100} + 1をとるとkは自然数であるがDの元ではないので
max{d1, d2, ... , d100}はDの最大元となり上限は存在する

「決定番号の集合をKとして、変数k∍K をとると、変数kは、[1,∞) (半開区間)の整数」は
「diは任意の自然数」と同じことを言っているだけなので数当て戦略の成否には無関係

598:132人目の素数さん
17/07/07 23:17:03.58 NDA+kZzb.net
一日がかりで自ら>>512を補強するアホw

599:132人目の素数さん
17/07/08 01:45:42.78 apnSttkv.net
>>517
> 誠示先生「a ∈ R (有限値) に対して、a ×∞ = ∞ (a > 0)」とある。
> だから、a=1/2として、可算無限個の箱を、前半と後半に分けて、後半にしっぽの部分があるとすると、前半にも可算無限個の箱があるよね

もし箱を非加算無限個ならべることが可能ならば「拡張実数」の考え方を使うことができるでしょうね
「非加算無限個の箱を、前半と後半に分けて、後半にしっぽの部分があるとすると、前半にも非加算無限個の箱があるよね」

前半は有限個の箱しかないですよ
n(有限)とn+1(有限)が無限に続くことが可算無限個ということです
前半: {1, 2, ... , n(有限)} n+1は前半に含まれない = 自然数全体と1対1に対応しない
後半: {n+1(有限), n+2, ... , n+k, ... } = 自然数全体と1対1に対応する(nに加える数 1, 2, ... , k, ... から明らか)

600:現代数学の系譜 古典ガロア理論を読む
17/07/08 10:26:31.42 yPoPkF9y.net
>>533 補足
おっちゃん、どうも、スレ主です。

>>だから、決定番号の集合をKとして、変数k?K をとると、変数kは、[1,∞) (半開区間)の整数
>当然のことをいっているに過ぎないんだが、それでどうした。

おっちゃんとは、ようやく話が合ってきたね
「変数k?K をとると、変数kは、[1,∞) (半開区間)の整数」ってことが、時枝記事>>12で大きな役割をしているってことだ

おっちゃん、確率&統計は弱そうだが・・

たとえ話で悪いが、成績で
1クラス50人中10番以内、確率10/50
全校 500人中10番以内、確率10/500
全市 5万人中10番以内、確率10/5万
全国50万人中10番以内、確率10/50万
とする

つまり母集団が、多いほど、同じ10番でも、難しさが違う。この難しさというのは、10番以内に入る確率と言い換えることもできる
(参考)母集団 URLリンク(ja.wikipedia.org) (抜粋)「母集団の要素の数を母集団の大きさ[2]と呼び、標本調査法では大文字の N で表すのが慣例である。」

いま、時枝記事の決定番号の集合Kは、母集団として、加算無限集合だと。これが、本質なんだ

つづく

601:現代数学の系譜 古典ガロア理論を読む
17/07/08 10:27:16.08 yPoPkF9y.net
>>540 つづき

イメージがクリアになるように、母集団大きさをMとしよう。(Nは自然数で使ったので)

偏差値を知っているだろ? (参考)�


602:ホ差値 https://ja.wikipedia.org/wiki/%E5%81%8F%E5%B7%AE%E5%80%A4 (抜粋)「偏差値70以上(あるいは30以下)は、全体の2.275%。」 つまり、偏差値70で0.02275*M ってこと。1クラス50人中10番以内確率10/50 なら、偏差値60弱。全校 500人中10番以内、確率10/500 なら、偏差値70強。 母集団が大きくなると、「10番以内」のような具体的な数値は、数学的評価としては不適切になる つまり、Mの1%=0.01*Mでも、結構大きな数になる。M→∞なら、0.01*Mも→∞だ。 なにが言いたいかというと、「決定番号の集合Kは、母集団として、加算無限集合」を認めると、下記のようなことになる ある有限の決定番号の最大値dmaxに対して、決定番号dmax以内になる確率は、0(ゼロ)ってことだ つまり、”ある有限の決定番号の最大値dmaxに対して、決定番号dmax以内”(=:Aとする)の100個の数大小を論じることは、条件Aの下で確率を論じている それは、条件付き確率だと。そして、母集団が大きくなると、条件Aはごく例外的な確率でしか起きないということになる これが第1の論点 つづく



603:現代数学の系譜 古典ガロア理論を読む
17/07/08 10:29:00.72 yPoPkF9y.net
>>541 つづき

もう一つの論点は、成績の例えで言えば、問題が易しすぎて、ほとんど全員が満点を取ってしまうような場合だ
理想的な試験の難易度は、満点100点で、平均(μx)50点で、σx (標準偏差)=10 となるような問題だろう。

この場合、得点の数値xiと偏差値Ti Ti=10(xi-μx)/σx+50 で、Ti=xiとなるし、0~100点の全区間を評価に使っている。
対して、問題が易しすぎて、ほとんど全員が満点を取ってしまうような場合、平均(μx)100点、σx (標準偏差)=0で、偏差値Tiは計算できない

時枝記事の決定番号の分布がこれだ
>>528の”s=(s_1, s_2, s_3 ,…,s_m,s_m+1,s_m+2,…),s'=(s'_1, s'_2, s'_3 ,…,s_m,s_m+1,s_m+2,…)∈R^N は非可算個ある。”に戻ろう
数列sが代表、数列s'たちが、同値類だ。>>523の設定のように、数列s'に対する決定番号はmとして良いだろう
上記の成績の例で言えば、数列s'たちが生徒で、決定番号mが試験の得点に例えられよう

決定番号m=4としよう。いっちするしっぽを無視すると、s'=(s'_1, s'_2, s'_3 )と書ける。
s'_1, s'_2, s'_3たちは、s'_3 not= s_3(∵s'_3 = s_3 の場合決定番号が3になる)の任意の実数の組み、つまり、R^3。

決定番号m=5としよう。s'=(s'_1, s'_2, s'_3, s'_4 )|s'_4 not= s_4 だから、R^4。つまり、R^3xR とみることができる。

ここで、決定番号m=1,2,3,4,5を合わせた集合の中から、一つ数列を選ぶ。
これを、s'=(s'_1, s'_2, s'_3, s'_4 )と書いても一般性を失わない。 但し、s'_4 = s_4 も許容することとする。

だれが考えても、作為なしにs'を選ぶなら、決定番号m=4となる確率は1だ
∵決定番号m<=3となる場合は、s'_4 = s_4 の1点に限られ、それ以外の任意の実数rに対して、決定番号m=4となるのだから

そして、これが、決定番号m=5,決定番号m=6,・・・と繰り返され、mに上限がないということを思い出そう
もう言いたいことが、お分かりだろう

可算無限長の数列で、ある同値類の集合に対して、そこから任意の元を取り出したとき、有限の値mになる確率は0だ
∵有限の値mに対し、かならずm+1の決定番号を持つ数列が、xR倍存在するから(議論の詳細は上記の通り)

つづく

604:現代数学の系譜 古典ガロア理論を読む
17/07/08 10:30:54.50 yPoPkF9y.net
>>542 つづき

附言しておくが、ここでは、有限の値mとなる数列の存在を否定しているわけではないことにご注意
例外として有限の値mとなる数列より、m+1となる数列が圧倒的に多い。それが、ずっと繰り返されると
まあ、例「ほぼ全員が100点を取る試験の順位を考える」(例外として、100点以外がごく小数許容される)という話が適切かどうかは、議論はあると思うが。まあ、それに類することだと思ってくれ
これが第2の論点

おっちゃんには、第2の論点の方が理解し易いかな? もともとは、おっちゃんの>>523の設定を使っていし、おっちゃんの強い分野だからね(^^
第1の論点も、おっちゃんなら、よく読んで貰えばわかるだろう

まあ、”決定番号が変数として[1,∞) (半開区間)の整数”というところは、どちらかと言えば、第1の論点の方に強く出ていると思う


605: 以上です おっちゃん、どうですか?



606:現代数学の系譜 古典ガロア理論を読む
17/07/08 10:33:56.47 yPoPkF9y.net
>>540 訂正

「変数k?K をとると、変数kは、[1,∞) (半開区間)の整数」
 ↓
「変数k∈K をとると、変数kは、[1,∞) (半開区間)の整数」

607:現代数学の系譜 古典ガロア理論を読む
17/07/08 10:49:42.26 yPoPkF9y.net
>>529-530>>533>>537 訂正

変数k∍K
 ↓
変数k∈K

(いや、いつもと違うPCで入力したので、間違った(^^)

608:132人目の素数さん
17/07/08 10:50:54.43 6BOmmyoa.net
馬鹿スレ主と誤答おじさんの議論が始まりました

609:132人目の素数さん
17/07/08 12:17:39.69 WrLlowvw.net
>>540
おっちゃんです。
よく分からかったので聞きたいが、>>415
>n人の人がカラオケバトルしたとします
>トップは平均何回入れ替わるでしょう?
とは、「入れ替わる回数の平均を求める問題」で、
そのような問題と解釈していいんだろ?
それなら、私の考え方で答えは「1-1/n」になり、当たっているじゃないか。

610:132人目の素数さん
17/07/08 12:26:22.50 WrLlowvw.net
>>541
おっちゃんバカなので、
母集団だの偏差値の算出方法だのは全く分からず、そういう話にはついていけん。
予備校講師や塾講師の方がそういう話には詳しいだろうよ。

611:132人目の素数さん
17/07/08 12:47:22.40 WrLlowvw.net
>>540
一応、>>547について、>>415の問いの考え方や計算方法は>>424に書いてある。
その結果の答えが「(n-1)/n」でこれは「1-1./n」に等しくなる。

612:現代数学の系譜 古典ガロア理論を読む
17/07/08 14:23:06.81 yPoPkF9y.net
>>547-549
おっちゃん、どうも、スレ主です。
レスありがとう

>>n人の人がカラオケバトルしたとします
>トップは平均何回入れ替わるでしょう?
>とは、「入れ替わる回数の平均を求める問題」で、
>そのような問題と解釈していいんだろ?
>それなら、私の考え方で答えは「1-1/n」になり、当たっているじゃないか。

前提が全く違う話です。
なので、この話は後で。

>母集団だの偏差値の算出方法だのは全く分からず、そういう話にはついていけん。

了解。じゃ、>>542-543の第2の論点の方はどう?

「可算無限長の数列で、ある同値類の集合に対して、そこから任意の元を取り出したとき、有限の値mになる確率は0だ
∵有限の値mに対し、かならずm+1の決定番号を持つ数列が、xR倍存在するから(議論の詳細は上記の通り)」>>542
ということだが。詳しくは、>>542を見て下さい(^^

613:現代数学の系譜 古典ガロア理論を読む
17/07/08 14:54:58.73 yPoPkF9y.net
>>547-549 追加レス

おっちゃん、どうも、スレ主です。

>>n人の人がカラオケバトルしたとします
>トップは平均何回入れ替わるでしょう?
>とは、「入れ替わる回数の平均を求める問題」で、
>そのような問題と解釈していいんだろ?
>それなら、私の考え方で答えは「1-1/n」になり、当たっているじゃないか。

第1の論点>>541は、前提が全く違う話です。
ちょっと説明すると、n人の人がカラオケバトルで、これを名人大会にしたいので、カラオケをする人の母集団の大きさをM人として
トップ1000人から選んで、カラオケバトルをやりたいと。
1<n<<1000 (nは1000よりかなり小さい)としておきましょう。

M人から、ランダムにn人選んだとき、n人がすべて、カラオケ名人トップ1000人に入っている確率は、かなり小さいだろうと
これは、Mの大きさに依存することは、明白だろう

Mが、ある町の数千人として、そこからn人選んだなら、かなりの人がトップ1000人に入っているだろう
だが、ある地方都市の数万人から選んだら・・、大都市の数十万人から、関東全域の数百万人から選んだら・・、全国の数千万人から、全世界の数億万人から選んだら・・、と
Mが大きくなると、ランダムにn人選んだとき、n人がすべて、カラオケ名人トップ1000人に入っている確率は、どんどん小さくなる

このアナロジーで、決定番号の母集団と決定番号の関係を考えて貰えればありがたいね
「カラオケをやる人のランキング vs 同値類に属する数列s'の決定番号d'」
ってことなんだ

もちろん、n人選んだ中でカラオケバトルをして、1~n番の順位を付けるのは、選んだ後の話で、それはそれで良いと思うよ
纏めると、上記で、1000を有限値dmaxとして、M→∞を考えたのが、>>540-541の第1の論点だ

614:132人目の素数さん
17/07/08 15:26:15.86 WrLlowvw.net
>>550
箱の中の実数を当てる人がそれを行うことを考えるにあたり、
決定番号mが m=1 としかならないようなとき、つまり
s=(s_1, s_2, s_3 ,…),s'=(s'_1, s'_2, s'_3 ,…)∈R^N
について、s=s' としかならないようなときを考えると、
sの選び方は非可算個あって、同値関係~の同値類の集合族Aは非可算になり、
正整数の全体Nは可算集合だから、AからNへの全単射は存在しなくなる。
そして、s=s' としかならないようなときを考えると、決定番号は m=1 だから、
記事の>>13が全く意味を持たなくなって、箱の中の実数を当てる人が
箱の中の実数を当てる前にそれを見ることになって負けるから、
ゲーム自体が成り立たなくなる。その上、記事が


615:意味を持たなくなる。 なので、箱の中の実数を当てる人がそれを行うことを考えるにあたり、 決定番号が m=1 としかならないようなときも含めて記事を読んではいけない。



616:132人目の素数さん
17/07/08 15:35:51.83 WrLlowvw.net
>>550
>>552
s=(s_1, s_2, s_3 ,…),s'=(s'_1, s'_2, s'_3 ,…)∈R^N
については、同値関係~の同じ同値類の点であることを仮定している。

617:132人目の素数さん
17/07/08 16:21:17.38 chfUL8X2.net
>>547-549
>「入れ替わる回数の平均を求める問題」
何が入れ替わるんだい?トップでしょ

>>424は何言ってるのかわからん
おっちゃんは論理に基づく思考ができない「論痴」かな?

2回目で入れ替わる確率は1でなく1/2
3回目で入れ替わる確率も1でなく1/3
・・・
だからn回目までやって、入れ変わる回数の
平均値は、各回の確率を足し合わせた
1/2+1/3+・・・+1/n

618:132人目の素数さん
17/07/08 16:26:04.27 E6xxm3ca.net
工学バカに数学は無理なのでは??

619:132人目の素数さん
17/07/08 16:30:05.41 chfUL8X2.net
>>550-551
>>1の話には興味がないな

620:132人目の素数さん
17/07/08 16:35:31.42 WrLlowvw.net
>>554
>>「入れ替わる回数の平均を求める問題」
>何が入れ替わるんだい?
カラオケバトルのルールが分からないので
体操とかの採点競技に例えていえば、
観客側から見たトップが入れ替わる平均回数だよ。

621:現代数学の系譜 古典ガロア理論を読む
17/07/08 16:38:13.36 yPoPkF9y.net
>>552-553
おっちゃん、どうも、スレ主です。
そろそろ、おっちゃんのおやすみタイムかな?(^^

>決定番号が m=1 としかならないようなときも含めて記事を読んではいけない。

記事では、100列を考えるから、決定番号の最大値は、100以上だろう
だから、「決定番号が m=1 としかならないようなとき」は、除外でいいだろう。そう思って、>>551などでも1000という数字を選んでいるよ(^^

もっと言えば、スレ28の68 (下記)だよ
だが、いかなる巨大な数を考えても、母集合の大きさMが無限としたら、母集合から任意に選んだ数が、その巨大な数以下になる確率はゼロっことだ

ここは、集合論や解析につよい、おっちゃんなら分かるでしょ(^^

スレ28 スレリンク(math板:68番)
68 名前:132人目の素数さん[] 投稿日:2017/05/23(火) 10:22:45.67 ID:NQSYZDZ6
決定番号がなんかツボっぽいなw

これって常識的に考えると
「一応自然数だけど、人間が生きてる間に
 その桁を全て読むことができないような
 スッゲェバカでかい数」
が出てくるよね

たしかにいかほどバカでかくても大小関係は決まるよ
だから言ってることはまあごもっともだと思う
でもさ、多分上限のつもり数が非常識なほどデカいよ
だからきっと全然現実的な戦略じゃないと思うなぁ
こんな戦略、使えるのは神様だけでしょ(ボソッ)
(引用終り)

622:132人目の素数さん
17/07/08 16:48:14.68 WrLlowvw.net
>>558
>記事では、100列を考えるから、決定番号の最大値は、100以上だろう
決定番号の最大値Dが D≧2 となることを仮定すれば、
もう記事の>>13が適用出来るから、何も問題はない。

623:現代数学の系譜 古典ガロア理論を読む
17/07/08 17:25:04.32 yPoPkF9y.net
>>559

おっちゃん、どうも、スレ主です。

>決定番号の最大値Dが D≧2 となることを仮定すれば、
>もう記事の>>13が適用出来るから、何も問題はない。

えーと、時枝記事>>13から抜粋
"問題に戻り,閉じた箱を100列に並べる.
これらの列はおのおの決定番号をもつ.
さて, 1~100 のいずれかをランダムに選ぶ.
例えばkが選ばれたとせよ.
s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない."

これを、書き直すと、決定番号 s^1,s^2,・・、s^k,・・s^99,s^100 の100個の決定番号に対し
最大値D =max( s^1,s^2,・・、s^k,・・s^99,s^100 ) で、「s^k=最大値Dとなる確率は1/100に過ぎない」ってことだよね。
最大値関数 max()は分かるよね? 分からなければ、エクセルの説明だが、右記でも見てください URLリンク(www.excel-list.com)

で、最大値D =2なら、決定番号は 1 or 2しかないから、「s^k=最大値Dとなる確率は1/100に過ぎない」が、単純に言えなくなるよ
つまり、「s^k=最大値Dとなる確率は1/100に過ぎない」が言えるためには、


624:”決定番号 s^1,s^2,・・、s^k,・・s^99,s^100 が全て異なる値を取る”という、”ごく一般的な状況を想定している”ってことだろ? だから、その場合、”最大値Dは100以上でなければならない”ってことだよ



625:現代数学の系譜 古典ガロア理論を読む
17/07/08 17:35:41.55 yPoPkF9y.net
>>560 補足

>つまり、「s^k=最大値Dとなる確率は1/100に過ぎない」が言えるためには、”決定番号 s^1,s^2,・・、s^k,・・s^99,s^100 が全て異なる値を取る”という、”ごく一般的な状況を想定している”ってことだろ?

だが、この”ごく一般的な状況”が、実は簡単には「成り立たない」よと
それが、>>540-544であり、第1の論点と第2の論点だよ

626:132人目の素数さん
17/07/08 17:39:34.30 WrLlowvw.net
>>560
>だから、その場合、”最大値Dは100以上でなければならない”ってことだよ
記事の>>13では、決定番号 s^1, s^2, …, s^k, …, s^100 の100個の決定番号の中から
決定番号の最大値Dが定まるので、D≧100 は当然成り立つ。
つまり、2個以上の決定番号の中から決定番号の最大値Dが定まることを考えれば、
Dは D≧2 を満たすから、記事>>13が適用出来て何も問題は生じない。
そのことを簡単に書いたのが>>559

627:132人目の素数さん
17/07/08 17:42:01.07 WrLlowvw.net
それじゃ、もう、おっちゃん寝る。

628:132人目の素数さん
17/07/08 17:54:39.35 nuX65cN1.net
おやすみ

629:132人目の素数さん
17/07/08 18:23:34.97 6BOmmyoa.net
馬鹿過ぎ

630:132人目の素数さん
17/07/08 18:26:20.73 nuX65cN1.net
自分だけは馬鹿じゃないもんね

631:132人目の素数さん
17/07/08 18:31:43.54 chfUL8X2.net
>>558
>集合論や解析につよい、おっちゃん
そう思ってる時点で>>1は全然ダメだな

632:132人目の素数さん
17/07/08 19:03:36.41 WrLlowvw.net
>>565
>>567
実数列 s=(s_1, s_2, s_3 ,…),s'=(s'_1, s'_2, s'_3 ,…)∈R^N
について、m_0≧1 のとき s_{m_0}=s'_{m_0} となるような s=s' を考えたら、
同値関係~の同値類の元は1個しかないことになるだろ。
そして、そのような同値類は非可算個あるだろ。

633:132人目の素数さん
17/07/08 19:05:28.33 WrLlowvw.net
じゃ、いい加減、おっちゃんもう寝る。

634:132人目の素数さん
17/07/08 20:14:24.08 cvH+gNj0.net
どうして工学バカは勝手に前提を付け加えたがるのか???

635:132人目の素数さん
17/07/08 20:17:20.46 nuX65cN1.net
>>570
あなたも自分だけは馬鹿じゃないという前提をつけてますけどね

636:132人目の素数さん
17/07/08 21:17:29.20 6BOmmyoa.net
>>571は夏の風物詩

637:132人目の素数さん
17/07/08 21:46:11.82 cvH+gNj0.net
>>571
じゃあどのレスがどう馬鹿なのか具体的に示してくれ

こっちも具体的に示すから
>で、最大値D =2なら、決定番号は 1 or 2しかないから、「s^k=最大値Dとなる確率は1/100に過ぎない」が、単純に言えなくなるよ(>>560
100個の玉があり、そのうちの1個には"2"を、他には"1"を書きました。
玉を袋に入れて無作為に一つ取った時、"2"の玉を取る確率を答えなさい。

尚、最大の決定番号を持つ列が複数ある場合は勝つ確率は1である。

638:現代数学の系譜 古典ガロア理論を読む
17/07/08 22:40:53.31 yPoPkF9y.net
>>562
おっちゃん、どうも、スレ主です。
レスありがとう。了解だ。時枝記事の理解が進んだね

まあ、明日ゆっくり考えて下さい(^^

乗りかかった船というか、折角いままで1年以上時枝記事に関わったんだから、最後正しい理解「時枝記事は不成立」まで到達してほしいね
それが、おっちゃんにとっても、いままでの議論を無駄にしない選択だと思うし、私にとってもありがたい

>>540-544に書いた、第1の論点と第2の論点。特に論点2の方を頼む。
集合論や解析につよい、おっちゃんなら、少し考えれば分かるだろう(^^

まあ、>>517に書いたことも、かなり理解できるだろうと思うよ。例えば
「2.時枝記事>>12で、例えば数列のs = (s1,s2,s3 ,・・・,sn ,・・・)で、snが確率99/100で的中したとする。
 ビデオの逆回しのように、時間を戻すと、snに数を入れるとき、”by choosing the xi independently and uniformly on [0, 1] ”とすれば、いままで入れてきた箱や、これから入れる箱の数とは、独立なはず。
 だから、その時点では的中確率0(ゼロ)だ。
 ところが、時間が経って、箱の列が伸びて、可算無限個になったら、確率が変化して99/100か? それはおかしいだろう?」など

これ、逆に考えれば、
 数列のs = (s1,s2,s3 ,・・・,sn ,・・・)で、snが確率99/100で的中したとする。この数列のしっぽを切って有限列とする
 s = (s1,s2,s3 ,・・・,sn ,・・・,sm) だ。smは有限の範囲でいくらでもしっぽをずーと長く取れる

が、いくら長くても有限だと、的中確率0(ゼロ)だって(^^
一方、可算無限長さだと、確率99/100だと??(^^

ここらのおかしさ(奇妙さ)も、>>540-544の第1の論点と第2の論点で説明がつくだろう

あと、平場 誠示先生>>277 「無限大はあくまで, 有限な値からの極限として考えるべきものである.」という
これ、解析学の基本だよね。無限を、有限な値からの極限として考えない人は、おかしな結論に気付かないんだな(^^

639:132人目の素数さん
17/07/08 23:24:37.89 6BOmmyoa.net
ああいつものアレね
「有限で成り立つものは無限大の極限でも成り立つはずだ論法」ね
お前は春夏秋冬いつでもござれだな
せめて夏の風物詩になれ

640:132人目の素数さん
17/07/08 23:26:10.20 nuX65cN1.net
他人を馬鹿にしないと気が済まない性分

641:132人目の素数さん
17/07/08 23:29:01.04 6BOmmyoa.net
夏の風物詩こ、中学生ID:nuX65cN1のレス一覧
数学に関するコメントは皆無w


564 名前:132人目の素数さん[sage] 投稿日:2017/07/08(土) 17:54:39.35 ID:nuX65cN1 [1/4]
おやすみ

566 名前:132人目の素数さん[sage] 投稿日:2017/07/08(土) 18:26:20.73 ID:nuX65cN1 [2/4]
自分だけは馬鹿じゃないもんね

571 名前:132人目の素数さん[sage] 投稿日:2017/07/08(土) 20:17:20.46 ID:nuX65cN1 [3/4]
>>570
あなたも自分だけは馬鹿じゃないという前提をつけてますけどね

576 名前:132人目の素数さん[sage] 投稿日:2017/07/08(土) 23:26:10.20 ID:nuX65cN1 [4/4]
他人を馬鹿にしないと気が済まない性分

642:132人目の素数さん
17/07/08 23:30:47.11 nuX65cN1.net
>>577
レス抽出乙です

643:132人目の素数さん
17/07/08 23:31:34.76 6BOmmyoa.net
ほれ夏の風物詩君、君にレスが付いてるぞ
しっかり>>573に答えたまえ

644:132人目の素数さん
17/07/08 23:34:20.02 nuX65cN1.net
>>579
別に季節限定じゃないけど...

645:現代数学の系譜 古典ガロア理論を読む
17/07/09 08:28:24.31 P/6T2Xvy.net
>>574 補足
おっちゃん、どうも、スレ主です。
補足しておくよ

>母集団だの偏差値の算出方法だのは全く分からず、そういう話にはついていけん。 >>548

分かったよ。確率計算のところは、抜きにして良い(^^

なので>>542 の第2の論点たのむ。下記引用しておく
>>528の”s=(s_1, s_2, s_3 ,…,s_m,s_m+1,s_m+2,…),s'=(s'_1, s'_2, s'_3 ,…,s_m,s_m+1,s_m+2,…)∈R^N は非可算個ある。”に戻ろう
数列sが代表、数列s'たちが、同値類だ。>>523の設定のように、数列s'に対する決定番号はmとして良いだろう
上記の成績の例で言えば、数列s'たちが生徒で、決定番号mが試験の得点に例えられよう

決定番号m=4としよう。いっちするしっぽを無視すると、s'=(s'_1, s'_2, s'_3 )と書ける。
s'_1, s'_2, s'_3たちは、s'_3 not= s_3(∵s'_3 = s_3 の場合決定番号が3になる)の任意の実数の組み、つまり、R^3。

決定番号m=5としよう。s'=(s'_1, s'_2, s'_3, s'_4 )|s'_4 not= s_4 だから、R^4。つまり、R^3xR とみることができる。

ここで、決定番号m=1,2,3,4,5を合わせた集合の中から、一つ数列を選ぶ。
これを、s'=(s'_1, s'_2, s'_3, s'_4 )と書いても一般性を失わない。 但し、s'_4 = s_4 も許容することとする。

だれが考えても、作為なしにs'を選ぶなら、決定番号m=4となる確率は1だ
∵決定番号m<=3となる場合は、s'_4 = s_4 の1点に限られ、それ以外の任意の実数rに対して、決定番号m=4となるのだから

そして、これが、決定番号m=5,決定番号m=6,・・・と繰り返され、mに上限がないということを思い出そう
もう言いたいことが、お分かりだろう

可算無限長の数列で、ある同値類の集合に対して、そこから任意の元を取り出したとき、有限の値mになる確率は0だ
∵有限の値mに対し、かならずm+1の決定番号を持つ数列が、xR倍存在するから(議論の詳細は上記の通り)”
(引用終り)

つづく

646:現代数学の系譜 古典ガロア理論を読む
17/07/09 08:31:29.72 P/6T2Xvy.net
>>581 つづき

あと、極限の話も頼む。
『平場 誠示先生>>277 「無限大はあくまで, 有限な値からの極限として考えるべきものである.」という これ、解析学の基本だよね。』>>574

>>574より引用
> ビデオの逆回しのように、時間を戻すと、snに数を入れるとき、”by choosing the xi independently and uniformly on [0, 1] ”とすれば、いままで>入れてきた箱や、これから入れる箱の数とは、独立なはず。
> だから、その時点では的中確率0(ゼロ)だ。
> ところが、時間が経って、箱の列が伸びて、可算無限個になったら、確率が変化して99/100か? それはおかしいだろう?」など
> 数列のs = (s1,s2,s3 ,・・・,sn ,・・・)で、snが確率99/100で的中したとする。この数列のしっぽを切って有限列とする
> s = (s1,s2,s3 ,・・・,sn ,・・・,sm) だ。smは有限の範囲でいくらでもしっぽをずーと長く取れる

補足すると、Sm =: (s1,s2,s3 ,・・・,sn ,・・・,sm) と書き直すと
lim {m→∞}Sm =s = (s1,s2,s3 ,・・・,sn ,・・・) となる。
つまり、極限の考えでは、snの的中確率0(ゼロ)だ。時枝記事は、これと矛盾する!

同じこと(極限の考え)を、過去確率の専門家さんが示している。
>>124

”>確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義されるから,(2)の扱いだ.
の認識が少しまずい.
任意有限部分族が独立とは
P(∀i=1,…n,X_i∈A_i)=Π[i=1,n]P(X_i∈A_i)ということだけど
これからP(∀i∈N,X_i∈A_i)=Π[i=1,∞]P(X_i)が成立する(∵n→∞とすればよい)
これがきっと時枝氏のいう無限族が直接独立ということだろう.
ということは(2)から(1)が導かれてしまったので,
「(1)という強い仮定をしたら勝つ戦略なんてあるはずがない」時枝氏の主張ははっきり言ってナンセンス
確率変数の独立性というのは,可算族に対しては(1)も(2)も同値となるの
(引用終り)”

(∵n→∞とすればよい)ってところだ。極限の考えだね。
先の”lim {m→∞}Sm =s = (s1,s2,s3 ,・・・,sn ,・・・) ”と同じことだね

この極限の話、解析に強いおっちゃんなら分かるだろ

以上です

647:現代数学の系譜 古典ガロア理論を読む
17/07/09 08:58:14.73 P/6T2Xvy.net
>>582 訂正

Sm =: (s1,s2,s3 ,・・・,sn ,・・・,sm)
 ↓
Sm := (s1,s2,s3 ,・・・,sn ,・・・,sm)

かな(^^ (下記より)
URLリンク(ja.wikipedia.org)
等号
(抜粋)
定義

ある記号 A が意味するものを、ある記号 B が意味するものと同じであると定義するには「:=」を用いて
A := B (A を B によって定義する)
と書く。

つまりは「コロン“:


648:”のある側の内容を、無い側の内容(こちらはその文脈において既に定義されているものに限る)で定義する」という使い方をする。 (引用終り)



649:132人目の素数さん
17/07/09 09:39:31.59 c7rx3wCh.net
>>581
>可算無限長の数列で、ある同値類の集合に対して、
>そこから任意の元を取り出したとき、
>有限の値mになる確率は0だ

んなこたぁないw

数列sの同値類Sの任意の要素である数列s'に対して
その決定番号dは自然数、つまり有限値だ

もし、そうでないなら、s'はそもそもsと同値でない
つまりs'はsの同値類Sの要素ではない

650:132人目の素数さん
17/07/09 09:44:41.78 c7rx3wCh.net
>>582
平場氏の注意は
>∞=∞ = ∞× 1=∞ = ∞× 0 = 0
>などという計算をしてはいけない! 
の点だけである。

決して、
「長さnの有限列に最後の要素s_nがあるから、
 無限列にも最後の要素s_∞がある」
とかいう馬鹿丸出しな主張を正当化するものではない

651:132人目の素数さん
17/07/09 09:51:57.54 4FoU6amz.net
スレ主の頭の固さには呆れるばかり
決定番号は自然数(いわずもがな有限値)である
同じ指摘を何度受ければ理解するのか?

652:132人目の素数さん
17/07/09 09:56:56.75 c7rx3wCh.net
>>582
数列s = (s_1,s_2,s_3 ,・・・,s_n ,・・・)について、
sの同値類の代表元rをとってきたとする
r = (r_1,r_2,r_3 ,・・・,r_n ,・・・)

sとrは同値であるから、ある自然数dが存在し
s_d=r_d、s_d+1=r_d+1、・・・
という無限個の等式が成り立つ

そして、m個の列のうちm-1個の列の代表元をとってきて、
その決定番号の最大値をdmaxとすれば、
残り1個の列とその代表元との決定番号dが
dmaxより大きい確率は1/mである

つまり、残りの確率(m-1)/mで、dはdmaxより小さいから
残り1列sのdmax番目以降からの箱を全部開けて
その情報から残り1列の代表元rをとってくれば、
r_dmax=s_dmaxが成り立つ確率も(m-1)/mである

653:132人目の素数さん
17/07/09 10:07:15.63 lCOjTm2Z.net
>>581
おっちゃんです。
,同値関係~の定義の仕方など、時枝記事に修正を要する箇所はあるが、
スレ主がいっているようなところにはない。

654:132人目の素数さん
17/07/09 10:12:25.51 c7rx3wCh.net
>>586

まあ、>>1が突っ張るのもわからんでもない
決定番号は常に自然数だと認めた瞬間
>>1は敗けるからな

結局、>>1は「同値類の代表元がとれる」点を認めたくないのだが、
そう言い切ると「選択公理を否定する異端者」になる
>>1は、異端=負け犬と思い込んでるからこれも認められないらしい

だから「代表元はとれるが決定番号は∞」とかいって
うまくかわしたつもりになってるわけだが
しかし>>1の上記の発言こそ同値関係そのものを誤解した
滑稽極まりないオウンゴールなのである
こんなみっともない言い訳するくらいなら
「俺は選択公理を認めない!」
というほうが全然マシなのだが、集合論に疎い>>1は
そのことすら理解できないらしい
(ナイーブに考えれば選択公理はもっともらしいから、だろう)

655:132人目の素数さん
17/07/09 10:17:17.78 c7rx3wCh.net
>>588
>同値関係~の定義の仕方など、時枝記事に修正を要する箇所はある

何言ってんだ?
同値関係の定義の変更は、設定自体の変更だからダメだろ

656:132人目の素数さん
17/07/09 10:49:51.05 4FoU6amz.net
>同値関係~の定義の仕方など、時枝記事に修正を要する箇所はある

具体的に

657:132人目の素数さん
17/07/09 10:50:15.19 X7gOKFxZ.net
>>590
> 何言ってんだ?

誤答おじさんは「こいつ何言ってんだ?」系
馬鹿スレ主は「え?そんなことも分かってなかったの?」系

658:132人目の素数さん
17/07/09 11:03:57.28 c7rx3wCh.net
>>592
二人とも、他人の話が理解できず自分勝手な前提をデッチ上げる点がそっくり

659:132人目の素数さん
17/07/09 11:10:22.20 lCOjTm2Z.net
>>590
実数列 s=(s_1, s_2, s_3 ,…),s'=(s'_1, s'_2, s'_3 ,…)∈R^N について
n ≧n_0 のとき s_n=s'_n となるような正整数 n_0 が2個以上あったとしよう。
そのような正整数 n_0 を n_0, n_1 n_0>n_1 としよう。その上で、
n ≧n__1 のとき s_n=s'_n とすると、n ≧n_0 のとき s_n=s'_n となることは、n_0>n_1 から直ちにいえる。
だが、n ≧n_0 のとき s_n=s'_n を仮定したからといって、これから n ≧n__1 のとき s_n=s'_n が成り立つことは必ずしもいえない。
つまり、必ずしも、n ≧n_0 のとき s_n=s'_n なることと、n ≧n_1 のとき s_n=s'_n なることとが同値になるとは限らない。
その一方で、n ≧n_0 のとき s_n=s'_n となるような正整数 n_0 の存在性や最小性は保証されている。
だから、実数列 s=(s_1, s_2, s_3 ,…),s'=(s'_1, s'_2, s'_3 ,…)∈R^N について
或る正整数 n_0 が存在して n≧n_0 のとき s_n=s'_n となるとき s~s' と書くことで同値関係~を定義する際には、「或る」ではなく、
「最小の」正整数 n_0 が存在して n≧n_0 のとき s_n=s'_n となるとき s~s' と書いて定義しないと意味がない。

660:132人目の素数さん
17/07/09 11:26:46.24 c7rx3wCh.net
>>594
自明なことをまるで自分が最初に気づいたかのごとく滔々と述べるのが馬鹿の特徴

661:132人目の素数さん
17/07/09 11:33:31.63 lCOjTm2Z.net
>>595
n_0 に最小性の条件を課すかどうかは重要だろ。

662:132人目の素数さん
17/07/09 11:37:04.72 X7gOKFxZ.net
>>594
同値関係の定義は"或る正整数"でいいんです
同値なら必ず"最小の正整数"が存在するんです
その"最小の正整数"を決定番号と呼ぶんです
わかったらハイと言ってください

663:132人目の素数さん
17/07/09 11:39:06.34 lCOjTm2Z.net
>>597
ハイ、分かりました。

664:132人目の素数さん
17/07/09 11:49:27.99 lCOjTm2Z.net
>>597
1つだけ聞くが、同値関係~を定義するとき、
>或る正整数 n_0 が存在して n≧n_0 のとき s_n=s'_n となるとき s~s' と書く
と書いた途端に「或る正整数 n_0」は最小性を満たすことになるのか。

665:132人目の素数さん
17/07/09 12:14:22.34 NqIAlacD.net
同値関係の定義に n_0 の最小性は必要ない。すなわち、
n_0 の存在性だけから同値関係の「同値性」がきちんと証明できる。

一方で、決定番号の定義には n_0 の最小性が必要。

同値関係の定義にさえも n_0 の最小性が必要だと思ってるのば
バカのおっちゃんだけ。

666:132人目の素数さん
17/07/09 12:24:04.86 lCOjTm2Z.net
>>600
定義するなら、n_0 に最小性の条件を課して、
n_0 を決定番号扱いすれば記事が短くなるんじゃないか。

667:132人目の素数さん
17/07/09 12:28:35.75 NqIAlacD.net
>>601
論点をすり替えるなバカタレ。
お前の主張は記事を短くすることではなく

「このように修正しないと意味が無い」

というものだったはずだ。しかし、お前が言うところの修正は
全く必要なくて、現状の記事のままできちんと意味があって成立してるんだよ。

668:132人目の素数さん
17/07/09 12:43:26.96 lCOjTm2Z.net
>>602
そもそも、>>594に書いたように、
n ≧n__0 のとき s_n=s'_n なることについての同値関係~の同値類Aと
n ≧n__1 のとき s_n=s'_n なることについての同値関係~の同値類B
について、必ずしも A=B となるとは限らない。一般には A≠B となる。
同値関係~の同値類を扱うにあたり、この点がスッキリとしないのだが。

669:132人目の素数さん
17/07/09 12:58:06.05 lCOjTm2Z.net
>>602
>>603の訂正:
必ずしも A=B となるとは限らない。一般には A≠B となる。
→ 必ずしも 「A⊂B」 となるとは限らない。一般には「そのようにはならない」。
いわゆる、包含関係の扱いがスッキリしない。

670:現代数学の系譜 古典ガロア理論を読む
17/07/09 13:08:26.12 P/6T2Xvy.net
>>604
おっちゃん、どうも、スレ主です。
おれは、口出ししないけど、気の済むまでやってくれ

自分の疑問点を徹底的に明らかにするというのは
大事だね

そう思う
特に、”しっぽの同値類”なる商集合がどういう性質を持っているのか?

それは、時枝記事を考える肝だからね

671:132人目の素数さん
17/07/09 13:09:38.96 NqIAlacD.net
>>603-604
(X,≦) は有向集合とする。Y は集合とする。
X から Y への写像全体の集合を M と置く。
s,t∈M と k∈X に対して、命題 P(s,t,k) を以下のように定義する。

P(s,t,k):∀n≧k [ s_n=t_n ]

次に、k∈X を任意に取る。M 上の二項関係 α_k を

s α_k t ⇔ P(s,t,k)は真

として定義する。このとき、α_k (k∈X) はどれも M 上の同値関係となる。
また、M 上の二項関係 α を

s α t ⇔ ∃k∈X [ P(s,t,k)は真 ] (⇔ ∃k∈X [ s α_k t ] )

として定義する。このとき、α も M 上の同値関係となる(Xが有向集合であるという性質が重要である)。

以下、s∈M の α_k による同値類を C_{α_k}(s) と書くことにする。
また、s∈M の α による同値類を C_α(s) と書くことにする。
このとき、お前が言っていることは

・ C_{α_{n_0}}(s) と C_{α_{n_1}}(s) は一般には異なる集合である


672: という当たり前の事実に過ぎない。しかし、時枝の記事で扱っている同値関係は α_k ではなく α なので、お前が言っていることは時枝の記事と何の関係もなく、 ナンセンスである。ちなみに、C_α(s)=∪[k∈X] C_{α_k}(s) となるので、 C_{α_{n_0}}(s) と C_{α_{n_1}}(s) が異なる集合であっても C_α(s) にとっては 痛くも痒くもない。



673:現代数学の系譜 古典ガロア理論を読む
17/07/09 13:34:38.66 P/6T2Xvy.net
>>605 補足
先回りして書いておくと

>>13 時枝記事より抜粋
抜粋1)
”これらの列はおのおの決定番号をもつ.
さて, 1~100 のいずれかをランダムに選ぶ.
例えばkが選ばれたとせよ.
s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない.”

抜粋2)
” S^1~S^(k-l),S^(k+l)~SlOOの決定番号のうちの最大値Dを書き下す.
 いよいよ第k列 の(D+1) 番目から先の箱だけを開ける:S^k(D+l), S^k(D+2),S^k(D+3),・・・.いま
 D >= d(S^k)
を仮定しよう.この仮定が正しい確率は99/100,そして仮定が正しいばあい,上の注意によってS^k(d)が決められるのであった.
おさらいすると,仮定のもと, s^k(D+1),s^k(D+2),s^k(D+3),・・・を見て代表r=r(s~k) が取り出せるので
列r のD番目の実数r(D)を見て, 「第k列のD番目の箱に入った実数はS^k(D)=r(D)と賭ければ,めでたく確率99/100で勝てる.”
(引用終り)

<要するに>
1.100列で考える前に、問題を簡略化して1列で考察してみよう
 つまり、上記1)2)を簡略化して
 1’)何らかの方法で、大きな数Dを決める
 2’)D >= d(S^k)であれば勝ちで、D < d(S^k)であれば負け
 とすることができる
2.そうすると、”100列に拘らず、単にDとして十分大きな数を選べば、勝てる”と言い換えることができるだろう
 そこから、”いったい、Dとしてどれくらい大きな数を選べば十分か”という問題が生ずる
 それを考えたのが、>>581に引用した>>542の第2の論点なんだよ。結論は、どんなに大きな数Dを選んでも、十分ではない
 ∵決定番号に上限はないのだし、決定番号は mに対してその後者のm+1となる同値類の元が圧倒的に多い。それが際限なく続くのだからと>>581
3.そして、この上記2項に記載のことは、他の99列についても同様に成り立つんだ
 これが、時枝記事が「一見成立するように見えて、本当は不成立」となる理由だよ

まあ、同値類がしっかり理解できたら、これを考えてみてください
よろしく(^^

674:132人目の素数さん
17/07/09 13:39:30.29 4FoU6amz.net
>>607
何も分かっていないお前は
>おれは、口出ししないけど(>>605
を愚直に遂行されたし

675:132人目の素数さん
17/07/09 14:11:57.48 c7rx3wCh.net
>>607
>1.100列で考える前に、問題を簡略化して1列で考察してみよう
1列じゃダメだな。2列は必要

つまり
>1’)何らかの方法で、大きな数Dを決める
を具体的に
1’)2列のうち1列の代表元をとり、その決定番号Dを決める
とする

>2’)D >= d(S^k)であれば勝ちで、D < d(S^k)であれば負け
>”100列に拘らず、単にDとして十分大きな数を選べば、勝てる”

「十分大きな」なんて要らない
単に見本が1つあれば、確率1/2で勝てる

>”いったい、Dとしてどれくらい大きな数を選べば十分か”

確率の話で十分(つまり確率1)を求める>>1は正真正銘の馬鹿
見本1個で1/2
見本2個で大きい方をとれば2/3
見本3個で最も大きい方をとれば3/4
・・・
見本(n-1)個で最も大きい方をとれば(n-1)/n

>どんなに大きな数Dを選んでも、十分ではない

十分である必要はない 確率0でなければ>>1の負け

676:132人目の素数さん
17/07/09 14:19:45.30 iT1B2Uxz.net
>>582
> lim {m→∞}Sm =s = (s1,s2,s3 ,・・・,sn ,・・・)
これは無限数列であるから同値類のどれかに属することになる
その同値類の代表元をrとすれば lim_{m→∞}Sm - r = s - r = {s1, s2, ... , sm, 0, 0, ... } (***)
となって決定番号はm+1となって有限

>>605
> 特に、”しっぽの同値類”なる商集合がどういう性質を持っているのか?
>>607
無限数列を考えたいのだが長さに上限のない有限数列があって長さ(自然数)をいくら増やしても無限数列にはできない
そこで有限数列の長さの極限を考えて無限数列にしたい

以下の無限数列とその同値類が持つ性質を利用する
「どのような無限数列を選んでもその数列は必ずある同値類に属している」

有限数列の(長さの)極限を求める際にすべきことは極限値である無限数列が属する同値類を決定することである
逆にいえば同値類を1つ決めて有限数列の極限がそれに属するとすればそのまま無限数列にできる

つまり有限数列があってSm = {s1, s2, ... , sm} その極限が属する同値類の代表元がr = {r1, r2, ..., rm, rm+1, ... }
ならば lim_{m→∞}Sm = {s1, s2, ... , sm, rm+1, rm+2, ... } となる
この場合(***)より決定番号はm+1

> どんなに大きな数Dを選んでも、十分ではない
「どんなに大きな数Dを選んでも」無限(数列の長さ)には「十分ではない」のだから
無限数列を扱う以上は数当て戦略は成立する

677:132人目の素数さん
17/07/09 14:23:14.30 4FoU6amz.net
そもそも一列じゃ自由に見れる列が無いんだから当て様が無い
これほど酷いレスも無い、根本的にわかってない


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch