17/06/30 21:39:16.97 INb7Gqhx.net
>>275 直接関係ないが、検索でヒットした面白そうな資料追加
URLリンク(www.ma.noda.tus.A^c.jp)
解析学特論3 (4年前期)29p Lebesgue 積分の応用 (旧 解析学2) 平場 誠示 ('16/06/28)
下記、追加資料(確率論) 阪井章先生、前半の確率の歴史がなかなか面白い
(関数環と近似問題(「数学」の論文)は、中身はムズくて読めなかった。(^^)
URLリンク(isw3.naist.jp)
奈良先端科学技術大学院大学
URLリンク(isw3.naist.jp)
数理科学概論Ⅱ Introduction to Mathematical Science Ⅱ 阪井 章 2005
URLリンク(isw3.naist.jp)
追加資料(確率論) 阪井章 奈良先端科学技術大学院 2006
(抜粋)
例1.2 任意の集合- と- の部分集合の全部の集合F を考える.- の1点!0 とm > 0
に対して,
ωo ∈ A → μ(A) = m, ωo not∈ A → μ(A) = 0
と定義すると,{Ω,F, μ} は測度空間である.この測度を質量m の点質量point mass
という.とくに,m = 1 のときは,ディラック測度Dirac measure という.
URLリンク(www.jstage.jst.go.jp)
URLリンク(www.jstage.jst.go.jp)
関数環と近似問題 阪井 章(阪大) 「数学」 Vol. 28 (1976) No. 1 P 25-34 (なお、不思議にこれの引用文献ページが抜けているようだ)