17/06/30 21:07:11.82 INb7Gqhx.net
>>279 つづき
URLリンク(ja.wikipedia.org)
集合体
・field of sets: 集合が集合演算について成す体状の数学的構造。有限加法族を参照。
URLリンク(ja.wikipedia.org)
有限加法族
定義
空でない集合 S 上の部分集合族 M ⊂ 2S が和 ∪ と補集合をとる集合演算 c について閉じていて、和 ∪ に関する中立元 ? を持つとき、M を有限加法族または単に加法族と呼ぶ。
A1, A2 ∈ M ⇒ A1 ∪ A2 ∈ M,
A ∈ M ⇒ Ac ∈ M,
? ∈ M.
また、M ⊂ 2S が積 ∩ と対称差 Δ について閉じていて、積 ∩ に関する中立元 S を含むとき、M を集合体と呼ぶ。
A1, A2 ∈ M ⇒ A1 ∩ A2 ∈ M,
A1, A2 ∈ M ⇒ A1 Δ A2 ∈ M,
S ∈ M.
有限加法族の条件は加法的な一つの演算 ∪ に関する構造に注目していて、集合体のほうは積 ∩ と対称差 Δ の二つの演算がつくる集合環の構造に注目しての命名であるが、この二つの定義の条件は互いに同値であり、これらはまったく同じ概念を定める。また、これら(が含む集合環の)の条件から帰納的に
・A_{1},A_{2},・・・ ,A_{n}∈ M → ∪{k=1~n}A_{i}∈ M
・A_{1},A_{2},・・・ ,A_{n}∈ M → ∩{k=1~n}A_{i}∈ M
など、有限回の集合演算に関して閉じていることが示せる。
つづく