17/06/26 23:01:18.93 fEMhvHu0.net
>>231 つづき
7)ここで、最初に述べた、重み付き確率を考える。上記A3の重川先生のサイコロの記法に習って書くと
Ω={1(1),2(9),3(90),・・i(10^(i-2)*(10-1)),・・,L(10^(L-2)*(10-2))}、ここで、3(90)などは”d=3なら90通り”の意味で、3の札が90枚とでも思ってもらえば良い。この場合、Ωの場合の数は、10^(L-2)*(10-1)だ
8)A5に書いたように、ルーレットで、ポケットが10^(L-2)*(10-1)の物を考える。m=10^(L-2)*(10-1)とすると
確率は、d=1なら1/m, d=2なら9/m、d=3なら90/m、・・、d=iなら10^(i-2)*(10-1)/m、・・、d=LならL(10^(L-2)*(10-2)/m。
9)ここで、L→∞ を考える。つまり、大きさ無限大のルーレットを考えても良いし、ポケットと球をどんどん小さくしても良い。
ともかくも、例えば1 <= d <= 0.9L(前半9割) の 範囲の数を取る確率は、→0に収束する。
10)確率空間については、上記A3の場合に同じだ。
11)そして、再度強調しておくが、上記1)~4)までは、Δ(s,r)= s-rとして、数列の差を取ったので、しっぽが消える。だから、数列の長さLが、有限か無限かには関係なく、成り立つ
12)(まとめ)
a)”P(Ω)=1、P(K)=0を満たす必要がある”のご指摘は正しいが、列の長さLでL→∞の極限として、上記9)のように”例えば1 <= d <= 0.9L(前半9割) の 数を取る確率は、→0に収束する”という結論です
b)なお、同じく”P(Ω)=1、P(K)=0を満たす必要がある”のご指摘は正しい。
が、A4の2)に示したように、Sergiu Hart氏のPDF ”by choosing the xi independently and uniformly on [0, 1] ”” Player 1 can guarantee a win with probability 1 in game1”も同じ指摘が当てはまる。
つまり、極限を考えない限り、”probability 1”は導けない(確率空間のσ-加法性から外れるだろう。*)
(繰り返すが、上記A2.3)西山 茂先生 小樽商科大学ビジネススクール 「2.2 離散型変数から連続型変数へ」をご参照。)
追伸
注*)ここも、時枝先生は、間違いを犯していると思われる。”箱の任意の実数Rを、(区間ではなく)ピンポイント(1点)で当てる確率は、現代の測度論的確率論では扱えない”(σ-加法性不成立)ということ
つづく