17/06/26 22:47:56.53 fEMhvHu0.net
>>225 つづき
2)重川 一郎 京都大学大学院理学研究科数学教室
URLリンク(www.math.kyoto-u.ac.jp)
URLリンク(www.math.kyoto-u.ac.jp)
2012年度前期 確率論基礎 (講義ノート PDF file) 重川 一郎 京都大
(抜粋)
第1章確率空間と確率変数
確率空間
基本的にσ-集合体では加算個の演算が自由にできる.確率論では可測空間に,確率Pを付加したものを考える.
定義1.3 可測空間(Ω、F)上の測度PでP(Ω) をみたすものを確率測度 という.すなわち次の条件がみたされる:
略
これらを組にした(Ω、F、P)を確率空間という.
Ωを全事象,または標本空間 という. Ω の要素ω を根元事象 または標本という.
F の要素A を事象 といい,その補集合A^c =Ω\A
を余事象 という.A∪Bを積事象,A∩B を和事象,Φを空事象と呼ぶ.
例1.1 サイコロ投げの場合
確率空間として次のものを準備すればよい.
Ω={1,2,・・・,6}^N ∋ ω=(ω1,ω2,・・・)
ωn は1,2,・・・,6 のいずれかで,n 回目に出た目を表す.確率は
η1, η2,・・・ηn
を与えて
P(ω1=η1,ω2=η2,・・・ωn=ηn)=1/6^n
と定めればよい.これが実際にσ-加法的に拡張できることは明らかではないが,Kolmogorovの拡張定理と呼ばれる定理により証明できる.
(引用終り)
(私からの補足)σ-集合体Fについては、ここに数学的明示はないが、今回の時枝問題を考える上では、この程度で良いと判断する。(なお、Kolmogorovの拡張定理 は、過去スレで出た記憶あり)
つづく