17/06/24 16:38:26.49 IFjkOwpb.net
>>178
どうも。スレ主です。
レスありがとう
>> この場合、L→∞の極限では、1<= L <∞ の決定番号は、零集合として存在しうる
>『よって決定番号が有限の値を取る確率は0である』
>そう言いたいんでしょ? Yes or No?
もちろん、Yesですが、力点は、”存在しうる”のところにあります。
補足1
・任意のn∈N(自然数)に対して、決定番号がnとなる数列が必ず構成できます
・ところが、任意のnに対して、決定番号がn+1(nの後者)となる数列も必ず構成できます
・そして、決定番号がn+1となる数列の方が、場合の数としては圧倒的に多い。nまでの場合の数の(p-1)倍です (>>141のAの4項ご参照)
・決定番号がn+2となる数列も同様に考えられて、n+1までの場合の数の(p-1)倍です。・・と無限につづきます
補足2
・上記補足1に示したように、決定番号の出現確率は、決定番号が大きくなるほど、大きくなります
・さて、下記URLの「さまざまな確率分布」を見て下さい
・正規分布や対数正規分布など、確率変数Xの区間が X < ∞の確率分布がありますが、必ず X → ∞で、その出現頻度は0に減衰します
・もし、 X → ∞で、その出現頻度は0に減衰しなければ、母数は∞になり、数学として取り扱うことは困難になります
・決定番号の出現確率は、上記のように、 X → ∞で、その出現頻度は0に減衰しません
(参考)
URLリンク(www.biwako.shiga-u.ac.jp)
さまざまな確率分布 probability distributions - 数理的思考 - 中川雅央 【知と情報の科学】
(抜粋)
観測されたデータを説明する統計モデルに,どの確率分布を使えばうまく説明できるでしょうか.
正規分布や二項分布など,確率分布の種類は数多く,いろいろなカタチ(分布形)があります.確率分布の当てはめを考えるには,そのカタチ(分布形)を知ることが重要です.
2. 連続型確率分布 (Continuous probability distributions)
確率変数がある区間内の全ての実数を取り