現代数学の系譜11 ガロア理論を読む33at MATH
現代数学の系譜11 ガロア理論を読む33
- 暇つぶし2ch610:の大域幾何と、最近手がけ始めたスペクトルの研究 (大域解析) の雰囲気を伝えてみたいと思います。 擬リーマン幾何は、リーマン幾何や相対性理論の時空を記述するローレンツ幾何を特別な場合として含む概念です。その入り口を紹介しましょう。 定理1 (1)(リーマン幾何)必ず閉じている。(2)(ローレンツ幾何)決して閉じない。 定理1(2)は、第一発見者の名前を取って、カラビ=マルクス現象と呼ばれています(文献[ 2])。 定理1と定理2のいずれにおいても、「局所 大域」に関して、リーマン幾何とローレンツ幾何には著しい違いがあることを主張しています。もっと一般の符号(p,q) (p ? q ? 2) に対する擬リーマン幾何についてはどうでしょうか? カラビ=マルクス現象を一般化することにより、正の曲率の場合は閉じた空間形が存在しないことが証明されます。一方、負曲率の場合にはどのような整数 p,q に対して閉じた空間形が存在するかという問題は、まだ完全には解決していない難問です。
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch