現代数学の系譜11 ガロア理論を読む33at MATH
現代数学の系譜11 ガロア理論を読む33 - 暇つぶし2ch379:E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E5%A4%89%E6%8F%9B ローレンツ変換 (抜粋) ローレンツ変換(ローレンツへんかん、英: Lorentz transformation)は、2 つの慣性系の間の座標(時間座標と空間座標)を結びつける線形変換で、電磁気学と古典力学間の矛盾を回避するために、アイルランドのジョセフ・ラーモア(1897年)とオランダのヘンドリック・ローレンツ(1899年、1904年)により提案された。 アルベルト・アインシュタインが特殊相対性理論(1905年)を構築したときには、慣性系間に許される変換公式として、理論の基礎を形成した。特殊相対性理論では全ての慣性系は同等なので、物理法則はローレンツ変換に対して不変な形、すなわち同じ変換性をもつ量の間のテンソル方程式として与えられなければならない。 このことをローレンツ不変性(共変性)をもつという。 幾何学的には、ミンコフスキー空間における 2 点間の世界間隔を不変に保つような、原点を中心にした回転変換を表す。



380:現代数学の系譜11 ガロア理論を読む
17/05/29 21:52:35.47 IKiw8fcW.net
>>347
>その博識は君の博識とまったくレベルが違うと思うよw

当然ですよ(^^

381:132人目の素数さん
17/05/29 21:59:04.93 lK+BAHfy.net
>>344
>スレ主さんは数学知識のコレクターの感じがするんだよね。

そういうところが文系だなw

>>348
>ローレンツ変換自身は、アインシュタインの前に、
>ローレンツなどが見つけて発表していたんじゃないかな・・

ま、ローレンツは明確な原理は示さなかったからな
アインシュタインは光速不変の原理を立てた そこが重要

>全く独立に考えたとしても、先行している文献があれば、
>現代(21世紀)では、引用しなければマナー違反ですよね(^^

1900年代にはインターネットなんかないよw
昔はその手の話は沢山あった

双曲幾何のクラインモデルも、実はイタリアの数学者
ベルトラミが先に見つけて論文も出してる

382:132人目の素数さん
17/05/29 22:02:21.46 lK+BAHfy.net
>いま、おっちゃんに言われた本を読んでます。一松だったかな・・。ムズイですね~(^^

仕事の役に立たないからやめときな

ガロア理論知っても代数方程式は解けないし
多変数複素関数論知っても偏微分方程式は解けないから

383:132人目の素数さん
17/05/29 22:06:52.02 lK+BAHfy.net
Wikipediaってなんか分かってない感じの人が無理して書いてるっぽい文章多いな
みんななんでリコウぶりたいんだろ? やっぱ不遇なんだろうな

384:132人目の素数さん
17/05/29 22:09:56.14 lK+BAHfy.net
Wikipediaより

「(ローレンツ変換は)幾何学的には、ミンコフスキー空間における
2 点間の世界間隔を不変に保つような、原点を中心にした回転変換を表す。」

確かにローレンツ変換は、ミンコフスキー空間における
2点間のローレンツ計量を不変に保つよ

でもそれを「回転変換」っていうのは嘘だろう

385:現代数学の系譜11 ガロア理論を読む
17/05/29 22:12:13.44 IKiw8fcW.net
>>350
>ま、ローレンツは明確な原理は示さなかったからな
>アインシュタインは光速不変の原理を立てた そこが重要

同意。物理の原理と解釈を明確に示したところが革命的だったと
URLリンク(ja.wikipedia.org)
特殊相対性理論

>1900年代にはインターネットなんかないよw
>昔はその手の話は沢山あった

まあ、そうですが、文献の数も少なかったようです
が、いま、自分の頭で何年もいくら時間を掛けて考えても、他者の二番煎じになる可能性が高いでしょうね(^^
それは、避けるべき。岡とは時代が違いますよ

>双曲幾何のクラインモデルも、実はイタリアの数学者
>ベルトラミが先に見つけて論文も出してる

ああ、そうなんでしょうね
詳しくは知りませんが
グロタン先生の代数幾何は、イタリア数学者の代数幾何の結果の基礎付けになったそうですね。詳しくは知りませんが

386:132人目の素数さん
17/05/29 22:19:59.82 lK+BAHfy.net
>岡とは時代が違いますよ

岡が天才なのは否定しないが
フランスの数学者が岡のアイデアを盗んだと思ってるのは
日本の狂信的な国粋主義者だけだろう

387:132人目の素数さん
17/05/29 22:26:20.35 sRGKIevl.net
フィールズ賞を取るというのは、若い頃にある分野に集中して
しかもたまたま「当たる」という幸運が伴ってだから
博識とはあまり関係がないように思う。
有名大学で凄く博学だけど、自分では大して論文を
書いてない(書けなくなった)先生というのもいる。
大学では、「こんなことも知らないのか」と言われない
ために、体裁としての勉強もある。
勿論、理解を伴っていることは当然だが


388:。 でも、新しいことをやるということとは必ずしも関係ない。 グロタンなんて、どちらかというと既存の知識を 無視して研究するタイプでしょ。 大学の頃、ルベーグ積分に近いことを全く自己流に 考えて、しかし、ルベーグがもうやってるからとか 無駄になるとかは全く思わなかった、自分で やることに意味があったように書いている。



389:132人目の素数さん
17/05/29 22:43:44.16 lK+BAHfy.net
>>356
数学者は博学である必要はないね
別に博学であってはいけないとはいわないけど

車輪の再発明みたいなことは研究の現場では間々あるんじゃないかな
やっぱりあるレベルまでいくと同じようなこと思いつくとかあるんじゃないか?

研究は無駄の積み重ねですよ 結果まで一本道なんてことはない
でも論文ではそんなのいちいち書いてたら読みにくいから
さも真っ直ぐ思いついたかのように書く まあ仕方ないね

390:現代数学の系譜11 ガロア理論を読む
17/05/29 23:31:00.12 IKiw8fcW.net
>>351-357
全く時代と自分の置かれた環境を全く無視した議論をしてもね~

ああ、>>330で回答頂いていましたか・・、ふんふん。

>>331
>>貴方の数学科は、中高数学教師養成所ですか?
>どこの数学科でも、教員養成課程くらいはあるので

いや、上記以外に、大学教員養成所とか、数学研究者養成所、ないし自分の研究室後継者養成とかを、思っていました
>>357の「数学者」の定義が問題ですが、文脈はいわゆる一流数学者かな? 名前を出せば、日本人数学科のの3割が知っているとか・・(^^
でも、それは、「数学者」としてスーパースターでしょ(^^

そこで、「数学者」の定義レベルを落として、”どんな仕事でも良いが、数学を表芸として、お金をかせぐ人”=数学を表芸として職業に生かしている生活している人=数学でメシを食う人 としましょう
中高数学教師も、一応、数学でメシを食う人に入れましょう(^^
勿論、いわゆる「数学研究でメシを食う学者」には当たらないでしょうけどね

「数学研究でメシを食う学者」なんて、数学科卒業生のほんの一握りなんでしょ?
それは、あなた方の方がよくご存知だろう

あなた方の議論は、数学科卒業生のほんの一握りがなる、つまり、あなた方が成れなかった方の「数学研究でメシを食う学者」の議論でしかないように思いますがどうですか?

391:132人目の素数さん
17/05/29 23:34:36.91 7MNqmbux.net
自称ディベート嫌いがディベートにのめり込むの図

392:現代数学の系譜11 ガロア理論を読む
17/05/29 23:37:04.06 IKiw8fcW.net
>>355
>フランスの数学者が岡のアイデアを盗んだと思ってるのは

過去スレに書いてある通りです
あなたの知識と同じだと思いますよ

ああ、そうそう、”数学知識のコレクター”的言い方なら、お分かりと思うが、同様に”物理知識のコレクター”かも・・(^^

393:現代数学の系譜11 ガロア理論を読む
17/05/29 23:39:57.49 IKiw8fcW.net
>>358
ディベート嫌いは変わりないですよ。特に数学についてはね
いましているのは、どちらかと言えば、雑談ないし、ソクラテスメソッドかな? 数学以外の部分でのね

394:現代数学の系譜11 ガロア理論を読む
17/05/29 23:41:10.60 IKiw8fcW.net
>>358 訂正

名前を出せば、日本人数学科のの3割が知っているとか・・(^^
 ↓
名前を出せば、日本人数学科の3割が知っているとか・・(^^

395:現代数学の系譜11 ガロア理論を読む
17/05/29 23:43:07.88 IKiw8fcW.net
>>358 訂正

(冒頭も、おかしいか)

全く時代と自分の置かれた環境を全く無視した議論をしてもね~
 ↓
全く時代と自分の置かれた環境を無視した議論をしてもね~

396:現代数学の系譜11 ガロア理論を読む
17/05/29 23:52:17.16 IKiw8fcW.net
>>353
>Wikipediaより
>「(ローレンツ変換は)幾何学的には、ミンコフスキー空間における
> 2 点間の世界間隔を不変に保つような、原点を中心にした回転変換を表す。」

>確かにローレンツ変換は、ミンコフスキー空間における
> 2点間のローレンツ計量を不変に保つよ
>でもそれを「回転変換」っていうのは嘘だろう

そうですね。Wikipediaの記述の意味不明ですね
思うに、記憶では、ローレンツ変換は、座標軸が直交していない(90度でない)記憶がある
斜交軸になるって言いたいんじゃないですかね?(^^

まあ、>>6に書いた「じゃ、どうするかと言えば、出典明示とそこらの(抜粋)コピペです
まあ、自分なりに、正しそうと思ったものを、(抜粋)コピペしてます
が、それも基本、信用しないように
数学という学問は特に、自分以外は信用しないというのが基本ですし」

とある通りです。悪しからず(^^

397:現代数学の系譜11 ガロア理論を読む
17/05/30 00:02:01.78 fHaelpbN.net
>>352
>Wikipediaってなんか分かってない感じの人が無理して書いてるっぽい文章多いな
>みんななんでリコウぶりたいんだろ? やっぱ不遇なんだろうな <


398:br> Wikipediaの数学は、英版を見た方がいいですね。勿論、仏語できるならそちらも Wikipediaの左のコラムに、「English」とリンクがあって、そこをクリックすると、同じ項目の英語版です。そちらの方が質は上の場合が多い(^^



399:現代数学の系譜11 ガロア理論を読む
17/05/30 00:33:07.23 fHaelpbN.net
>>330
>数学科で習うようなペダンティックな理論は無駄でしょう

>>337
>ええ、あなたは工学屋らしく解析学やってればいいんじゃないですか?

>>351
>仕事の役に立たないからやめときな
>ガロア理論知っても代数方程式は解けないし
>多変数複素関数論知っても偏微分方程式は解けないから

(まとめレス)
1.>>330-331を見ると、あなたは、数学科卒業生で、中学高校の数学教師の資格だが、教師だったことはありませんと
2.で、いま仕事についているのか、はたまた、その仕事では数学が生かせていないのか不明だが、まあ、少なくとも仕事の経験はあるんでしょうね
3.”仕事の経験はある”前提で話をすると、”仕事に役立つ数学”だけを勉強するということは、非常に困難だと分かるでしょ? 未来予測的中が必要だから・
4.数学など、一つ上のレベルを勉強しておくことが、有利に働く場合は多い。例えば、高校数学で微積をやってもそれだけ使える人は少ない。大学レベルの勉強をすると、高校レベルが易しく見えるだろう
5.また、現実の社会で起きる課題は、試験問題とは違って、問題を数学の俎上に乗せることからやらないと行けない場合が多い
  (試験問題みたいに、綺麗な式が与えられていたり分かっている場合はまれ)
6.時代が変われば、要求される数学の質や量が異なる。例えば、エクセルが普及して、高等関数は使い易くなった。が、数学の知識がないと式が組めないだろう
7.さらには手作りの数学が必要になる場合もある。例として、有限要素法だとか。また、大規模マトリックスの効率的計算アルゴリズムの設計とかね
8.企業では、短期間に自分の直面する問題の知識を仕込まないと行けない場合が結構ある(一夜漬けともいう*))。数学でも同じだ。数学のレベルを高めておくと、「短期間に」という部分が可能になる
  *)試験で言えば、カンニング的な、問題文を読んでから教科書の該当箇所を見て答えを書く。教科書の該当箇所を正確に見つけて、正確に当てはめをする必要があるね

まあ、そうことで、目先の役に立つ勉強も大事だが、理系にとって、数学は上記のように、仕事が密接に数学と関係しているので、数学を勉強しておくメリットはあるんだよね(^^
まあ、自分の趣味と実益とを兼ねてね(^^

400:現代数学の系譜11 ガロア理論を読む
17/05/30 00:35:55.53 fHaelpbN.net
>>366 補足

>ガロア理論知っても代数方程式は解けないし

ガロア理論は、スレの一桁代で終わっているんだ(^^

>多変数複素関数論知っても偏微分方程式は解けないから

多変数複素関数論も、分からんなりに一応読んだのでご心配なく(^^

401:132人目の素数さん
17/05/30 00:52:30.38 rxAAkVGG.net
>分からんなりに一応読んだので
こういう勉強の仕方だと、まったくわかってないのにわかった気になる
数学ではそれが一番ダメ

402:132人目の素数さん
17/05/30 01:35:57.02 cSb4Zgmw.net
>>289
> 自然数の選び方の確率分布が定められるなら9/10といえるが
> そうでなければ、9/10だとはいえない、というのが今の確率論では

10個の自然数N^10が固定されていれば確率は9/10であり>>284が正しい。

標本空間を直積集合Ω=N^10×K, K={1,2,...,10}に取り、N^10が固定されていなければ貴方の言うとおり。
しかしs=N^10が固定されているなら考えるべき標本空間はΩ_s={s}×Kであり確率は9/10である。

時枝記事では箱にs∈R^Nがしまわれた後にゲームがスタートする。
ここで考えるべき標本空間はΩ_s=K, K={1,2,...,100}である。確率は99/10


403:0(以上)である。 ここでいう確率とは1つのsが与えられたときにプレイヤーが勝つ確率である。 任意に選ばれたs∈R^Nに対し、「同一のsに対して100回同じ戦略を採れば99回以上勝てる」というのが箱入り無数目。 「同じ戦略を採る」とは各試行で100面サイコロを振って1列を選ぶことを指す。



404:現代数学の系譜11 ガロア理論を読む
17/05/30 05:36:12.77 fHaelpbN.net
>>368
>こういう勉強の仕方だと、まったくわかってないのにわかった気になる
>数学ではそれが一番ダメ

ご高説は結構だが
貴方の一番の専門分野はなんですか?
貴方の勉強法で、数学科での成績はどうですか? 成果は上がりましたか?
「数学に王道なし」でしたね・・(^^

405:現代数学の系譜11 ガロア理論を読む
17/05/30 05:46:27.94 fHaelpbN.net
>>370
いや、そもそも、その「数学に王道なし」で勉強した数学科の数学が、自分の人生でどれだけのものなのですか?

教員の免許はあるが、教師だったことはありませんと>>331
「社畜サラリーマンとは違うよ」と>>327
なぜ、このスレにいるのですか? 暇なんですね? Y >>330

よく理解できない
あなたの人生で、自分が勉強した数学科の数学って、どれだけのものなんですかね?
失礼ですが、貴方が一番勉強した数学の専門分野な何ですか?

406:現代数学の系譜11 ガロア理論を読む
17/05/30 06:07:59.51 fHaelpbN.net
>>216
>ID:PqWMwFYKさん 今更ですが
>どうも見当違いなことばかり言って申し訳ない
>やはり記事をコピーして読むべきでした
>でもおかげで「箱入り無数目」のトリックがよく理解できた・・・気がします(笑)

納得したんですかね? で、結論は下記ですか?

『「矛盾」してるまでの証明は必要ありません
論理の飛躍を指摘すれば十分です
時枝氏の出した確率99/100は大きな論理の飛躍です
なぜなら可測関数に対してのみ主張できる結果を、証明なしに非可測関数に適用しているからです』>>120

『非ユークリッド幾何学は実際に構成できたから認められたわけなので
「箱に入れる確率変数列X_1,X_2,...,は独立同分布である」
「どの列が最大長になるか同確率」
を同時に満たすようなモデルがあってはじめて意味をなすでしょう』>>139

『つまり構成できないんですね。
与太話をどうもありがとうございました
ちなみに
「箱に入れる確率変数列X_1,X_2,...,は独立同分布である」
であればいくらでも構成できますよ。
どちらが数学的に優れているか明らかですね』>>201

ってことですかね? ID:PqWMwFYKさんの主張通りだと

407:現代数学の系譜11 ガロア理論を読む
17/05/30 06:09:11.34 fHaelpbN.net
>>371 訂正

貴方が一番勉強した数学の専門分野な何ですか?
 ↓
貴方が一番勉強した数学の専門分野は何ですか?

408:132人目の素数さん
17/05/30 06:14:20.22 vsuKCQ5v.net
>>361
>ソクラテスメソッド

ソクラテスって今思うと
「知らないことを知らないといいたがらず
 相手に知らないといわせたがる人格障害者」
だったんだなぁ

409:132人目の素数さん
17/05/30 06:20:33.70 vsuKCQ5v.net
>>372
>記憶では、ローレンツ変換は、座標軸が直交していない(90度でない)記憶がある
>斜交軸になるって言いたいんじゃないですかね?(^^

それは回転と関係ないな

>数学という学問は、自分以外は信用しないというのが基本ですし

数学に限らず、学問の基本は自分を信用しないことだよ

410:132人目の素数さん
17/05/30 06:24:26.10 vsuKCQ5v.net
>>369
>10個の自然数が固定されているなら
>考えるべき標本空間はΩ_s={s}×Kであり
>確率は9/10である。

ええ、ごもっともです。
「箱入り無数目」の判断の根拠もそこにあります

一方で、9個の自然数から10個目を予測すると考えるなら
異なる結果になる可能性もあります

411:132人目の素数さん
17/05/30 06:29:58.81 vsuKCQ5v.net
>>372
>納得したんですかね? で、結論は下記ですか?

とありますが、99/100でなく0だというのであれば
>>300の方が述べられてように
「あいてない1列の決定番号が、他の99列より大きい確率は1だ」
と いうことですか?上記の結論が
「箱に入れる確率変数列X_1,X_2,...,は独立同分布である」
から導けるんですか?

ああ、ソクラテスの韜晦術はもう結構ですよ
ここは文系の”哲学板”ではないですから

412:現代数学の系譜11 ガロア理論を読む
17/05/30 07:02:50.90 fHaelpbN.net
>>374-377
One Stone 様 (現 Une Pierre Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets)ですかね?
朝早く、規則正しい生活、ご苦労さまです(^^
まだ、お仕事ないんですか?
早く決まるといいですね(^^

413:現代数学の系譜11 ガロア理論を読む
17/05/30 07:10:12.29 fHaelpbN.net
>>378 つづき

URLリンク(textream.yahoo.co.jp)
表示名:Une Pierre Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets Yahoo! JAPAN
投稿コメント一覧 (3205コメント)
(抜粋)
市川秀志 徹底研究
No.56916
2017/05/29 09:42
>>No. 56893
あだっちー氏
>本当に自分の説を広めたいなら、2chにでも投稿すべきだ。
>そうすれば、たとえ支持者は出なくても、たくさんの人に読んでもらえるのだ。
>恐れずに2chにスレを立てて、そこで議論すべきだ。

この件については大賛成w
(引用終り)

アドバイスを受けて移動したのは、貴方でしたか(^^
私は、市川秀志氏みたく、サイコパスはまともに相手しませんので、悪しからず(^^

414:132人目の素数さん
17/05/30 07:11:07.79 vsuKCQ5v.net
>>378
誰ですか?

そういう見当違いの問いを発するんなら
ご自分の出身大学及び卒論(修論・博士論文)のテーマとか
述べていただけますかね そのほうが議論の役に立ちますよ

まああなたはそんな質問には答えられないでしょうから
>>377に答えてください あなたの主張を前提とした結論ですよ
根拠くらい答えられるでしょう?

415:132人目の素数さん
17/05/30 07:15:07.04 vsuKCQ5v.net
>>379
妄想は無視します

「箱入り無数目」に関する、あなたの主張は>>300の通り
「あいてない1列の決定番号が、他の99列より大きい確率は1だ」
と いうことですか?上記の結論が
「箱に入れる確率変数列X_1,X_2,...,は独立同分布である」
から導けるんですか?

416:現代数学の系譜11 ガロア理論を読む
17/05/30 07:21:48.08 fHaelpbN.net
>>379 つづき

過去スレより
スレリンク(math板:443番)
443 自分返信:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2017/05/25(木) 07:19:19.14 ID:/bwT01kG

ID:1maZ/hoI、表示名:One Stone Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets には
サイコパス対策
・サイコパスの存在を忘れない
・相手の肩書きに惑わされない
・不要な競争心・正義感を持たない
が効きそうだな

サイコパスは、適当に流す(スルー)か・・

417:現代数学の系譜11 ガロア理論を読む
17/05/30 07:27:47.86 fHaelpbN.net
>>380-381
どうも。スレ主です。
One Stone 様 (現 Une Pierre Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets)ではないと? それは失礼しましたm(_ _)m
サイコ的攻撃性が全開だったのでつい・・

418:132人目の素数さん
17/05/30 07:32:00.88 cSb4Zgmw.net
>>376
> 一方で、9個の自然数から10個目を予測すると考えるなら
> 異なる結果になる可能性もあります

はい。
しかし再度強調しますが10個の自然数は最初に決まっているのです。
後から入れるのではありません。

1.プレイヤー2が9列のR^Nの箱を開け中身を見た後に、
2.プレイヤー1が10列目の箱にR^Nを入れ、
3.プレイヤー2が10列目の箱の中身を当てる

というゲームではない、ということです。
それは積分順序を勝手に入れ替えることに相当する、ということです。
(急に無数目の例になってしまいましたが)

419:現代数学の系譜11 ガロア理論を読む
17/05/30 07:


420:36:11.07 ID:fHaelpbN.net



421:現代数学の系譜11 ガロア理論を読む
17/05/30 08:11:12.74 fHaelpbN.net
>>375

まず、リンクが違うね 372 →364

で、本題
>>記憶では、ローレンツ変換は、座標軸が直交していない(90度でない)記憶がある
>>斜交軸になるって言いたいんじゃないですかね?(^^
>それは回転と関係ないな

えーと、下記ですね。行列はこのスレでは書けないので、下記リンクご参照(^^
まあ、分かり難い記述ではありますね
URLリンク(ja.wikipedia.org)
ローレンツ変換
(抜粋)
幾何学的には、ミンコフスキー空間における 2 点間の世界間隔を不変に保つような、原点を中心にした回転変換を表す。

2.2 ミンコフスキー空間でみたローレンツ変換

また、パラメータ θ を用いて、虚時間 w = i ct を用いれば、行列を用いれば、それぞれ と表すことができる。

この表現を用いると、ローレンツ変換がミンコフスキー空間上での虚数角 iθ の回転に相当することが容易に理解できる。

(引用終り)

422:現代数学の系譜11 ガロア理論を読む
17/05/30 08:24:31.80 fHaelpbN.net
>>375
>>数学という学問は、自分以外は信用しないというのが基本ですし
>数学に限らず、学問の基本は自分を信用しないことだよ

人生では、大事なことは、まず自分を信じること
信じることのできる自分を、教育し育て作ること
振り込め詐欺対策としては、他人の言説を疑いを持って聞くこと

「数学に限らず、学問の基本は自分を信用しないこと」で勉強して来た人は、不幸だね(^^
まず、いろいろ人にも聞いて、信じられる人とテキストを見つけることが、大事じゃないかな?(^^

423:現代数学の系譜11 ガロア理論を読む
17/05/30 09:03:29.38 fHaelpbN.net
>>372
独り言だが

・問題提起は、>>120”時枝氏の出した確率99/100は大きな論理の飛躍です なぜなら可測関数に対してのみ主張できる結果を、証明なしに非可測関数に適用しているからです”と
・この問題意識は、時枝氏も持っていて、>>103から下記引用542ご参照
 ”542 名前:132人目の素数さん[] 投稿日:2016/07/04(月) 00:06:31.30 ID:1JE/S25W
 時枝氏の主な主張は次の2つだろうだろう
 1. 確率論を測度論をベースに展開する必要が無い
 2. 無限族の独立性の定義は微妙

 しかし1に関していうと時枝氏の解法は,現在の測度論から導かれる解釈のほうが自然.
 (当てられっこないという直感どおり,実際当てられないという結論が導かれる)
 2に関して言うとそもそも時枝氏の勘違い.
 時枝氏の考える独立の定義と,現代の確率論の定義は可算族に対しては同値である”
(引用終り)

・そして、時枝氏自身は、記事の中では、上記1と2の証明は与えていない
・だから、非可測集合を用いても良いということが、明確になるような議論がありがたいね。「xxだから、非可測集合を用いても良い!」という明言がないのさびしいね(^^
(Q「なんで、現代確率論は、主に可測集合限定なんですかね?」 A「可測集合限定でないと、どこかに矛盾が生じる可能性大だから・・」ということじゃないかね)

あっ、単なる独り言です。気になさらないで下さい(^^

424:132人目の素数さん
17/05/30 16:03:07.12 Rh34EVgW.net
>>346
おっちゃんです。
>岡潔先生は弟子の養成があまり上手でなかった
西野利雄、藤田収、武内章などだけでなく、確か藤田玲子とか女性の弟子も何人かいる筈。

425:132人目の素数さん
17/05/30 16:09:01.42 Rh34EVgW.net
>>367
一松本は、岩波数学辞典増訂版が刊行


426:された1960年と同じ年に刊行された。 知る限りでは、一松本が発行された60年当時の多様体の和書は、 少なくて、他にポントリャーギンの連続群論位しかない。 様々な分野のマトモな本は殆どなかったときで、複素(解析)多様体の概念が書かれている。 マトモな多様体の和書が出たのは、殆ど一松本より後になる。他の色々な分野もそう。 書かれた当時は、グロタンディークの業績と被るかどうかの微妙な年代になる。 今から見たら、代数幾何も当時はスキームのないような古いやり方になっているといっていい。 一松本は、自分なりの厳密性の論理に合わせて感覚的に読む本。 一松本の巻末に挙げられている和書は殆どない。 参考になるには、基本的には、せいぜい岩波数学辞典の増訂版か第2版位。 それでも、著者が著者だけに、野口本よりは読み易く書かれていると思う。 野口本は、ベルグマン核が載っていないし、今のスキームを用いた代数幾何をする人向けだろう。 西野本と比較したら、名称が異なる概念も多く、理解することが 単に論理や言葉で理解することではないことが分かる。 岡自身の直観や閃きを理解することになる。 偏微分方程式でやりたかったら、ヘルマンダー読めばいい。 この本は、ヘルマンダーがはじめて連立線形偏微分方程式系を考えるに至ったような 或る意味で記念すべき本である。 原理的には、解析概論、溝畑本やシュワルツの超函数の理論と、岩波数学辞典第2版があれば読める。 今だと、解析概論は、杉浦解析入門と現代数学概説Ⅱ(ルベーグ積分)か何かに分かれる。 細かいことについては、確か岩波数学辞典第2版が教科書になる。



427:132人目の素数さん
17/05/30 16:37:56.32 Rh34EVgW.net
>>367
>>多変数複素関数論知っても偏微分方程式は解けないから
複素変数zは z=x+yi x,y は実変数 と表わされて、
C^n と R^{2n} nは正整数 とは加法について同型だから、何か適切なことをすれば、
4次元空間の物理で役立ちそうな気はするが。

428:現代数学の系譜11 ガロア理論を読む
17/05/30 17:27:57.37 fHaelpbN.net
>>389
おっちゃん、どうも、スレ主です。
岡潔ね、もともと変人だった上に、晩年みなからヨイショされて、カルトっぽくなった(下記など)

あれじゃ、数学の弟子は育たない。宗教なら可だろうがね(^^
実際彼の弟子からは、彼の数学を超えるて行った(岡理論をさらに先に進める)弟子は出ていないんじゃないかね?(^^

URLリンク(www.okakiyoshi-ken.jp)
数学者岡潔思想研究会のサイト
岡潔講演録(18):【27】 西洋人の創造 2016.5.29up
(抜粋)
創造は無心になってやるんですね。無心になってやれば、童心の季節に返って自我というものはない。童心の季節においてやるものです。ところが西洋人は時間空間というものの枠がどうも離れられないらしい。

429:現代数学の系譜11 ガロア理論を読む
17/05/30 17:46:37.98 fHaelpbN.net
>>390
おっちゃん、どうも、スレ主です。

>一松本は、岩波数学辞典増訂版が刊行された1960年と同じ年に刊行された。
>知る限りでは、一松本が発行された60年当時の多様体の和書は、
>少なくて、他にポントリャーギンの連続群論位しかない。

おっちゃん、年いくつやねん(^^
古い話、詳しいね
ここら(和書の古本について)、おっちゃんより詳しい人は少ないやろね(^^

430:132人目の素数さん
17/05/30 17:47:25.02 Rh34EVgW.net
>>392
いや、少なくとも、西野利雄、藤田収、武内章、藤田玲子は弟子。
藤田玲子についてはあやふやだが、奈良女子大で岡と何らかの縁があったと思う。
>彼の数学を超えるて行った(岡理論をさらに先に進める)
理論を先に進めるだけが判断基準ではなく、
ハルトーグスの逆問題という正則性について岡潔が残した宿題がある。
これは、領域が擬凸ということだけでは、条件が強すぎて完全に肯定的には


431:解けない。



432:哀れな素人
17/05/30 17:47:29.11 bVAlVPbi.net
パソコンの空き容量が減って、昨日の午後から、
その対策に追われていた。
おかげで、このスレを見ることもなく、
従ってストレスを感じることもなく、気が清々していた(笑

しかしペンタコ男と定義少年はまだ分っていないらしい(笑
お前らが何を言おうと、無限級数の和とは極限値であって、
1/2+1/4+1/8+……=1と書いてあっても
1/2+1/4+1/8+……→1の意味である(笑
こんなことは常識だ(笑

それから実無限なんてものは存在しないのだから、
そんなものを認めて体系を立てても意味がない(笑
1+1=3という公理を立てて体系を立てても
何の意味もないのと同じことだ(笑

そういうことが分っているのか?(笑
数学知識を誇っても何の意味もないぞ(笑

433:現代数学の系譜11 ガロア理論を読む
17/05/30 17:48:14.03 fHaelpbN.net
>>390
おっちゃん、どうも、スレ主です。

>偏微分方程式でやりたかったら、ヘルマンダー読めばいい。
>この本は、ヘルマンダーがはじめて連立線形偏微分方程式系を考えるに至ったような

私には、そこまでは、不要だな(^^
おっちゃん、>>366に書いたが、「6.時代が変われば、要求される数学の質や量が異なる。例えば、エクセルが普及して、高等関数は使い易くなった。が、数学の知識がないと式が組めないだろう」と
要するに、数値解法が発達して、時代はCAD/CAM/CAEなんよ(下記)
「計算力学技術者(CAE技術者)の資格を取得すると良いでしょう。固体力学や熱流体力学など、すぐに使える知識が勉強できます。単にソフトウェアのオペレーションができるというだけでは解析結果が正しいのかさえわかりませんので、CAE技術者とは言えないのです。」ってあるやろ?

いまどき、CAEの計算力学に使われている偏微分方程式が、「おお、こんな程度か! 簡単なものだね~(^^」と言える程度に勉強しておけば良いねと(^^

まあ、昔読み書きソロバンと言った。その後電卓。その後エクセル。いまCAEだ(^^
URLリンク(persol-tech-s.co.jp)
いまさら聞けない、CADとCAMとCAEの違いとは |IT・Web・機電の派遣求人ならパーソルテクノロジースタッフ 2017
(抜粋)
CADは設計、CAMは製造、CAEは技術

もう一つ押さえておくべきCAT

CAEは多角的なシミュレーションをすることから複合的な知識が必要とされ、コンピューター以外にも工学全般、数値解析の知識も必要となります。そのために計算力学技術者(CAE技術者)の資格を取得すると良いでしょう。
固体力学や熱流体力学など、すぐに使える知識が勉強できます。単にソフトウェアのオペレーションができるというだけでは解析結果が正しいのかさえわかりませんので、CAE技術者とは言えないのです。

これからのエンジニアには不可欠

434:現代数学の系譜11 ガロア理論を読む
17/05/30 17:49:41.10 fHaelpbN.net
>>392 訂正

実際彼の弟子からは、彼の数学を超えるて行った(岡理論をさらに先に進める)弟子は出ていないんじゃないかね?(^^
 ↓
実際彼の弟子からは、彼の数学を超えて行った(岡理論をさらに先に進めた)弟子は出ていないんじゃないかね?(^^

435:132人目の素数さん
17/05/30 18:12:15.40 Rh34EVgW.net
>>393
年は取っていないが、年齢は不詳ということで。
ポントリャーギンの連続群論と Chevalley の Theory of Lie groups Ⅰ (和訳あり) は手元にある。
どっちも松島多様体入門にリー群の参考文献として挙げられている。
他には、複素多様体の参考文献にヴェイユのケーラー多様体入門が挙げられていたりする。
これは、今でこそ和訳があるが、多様体入門が発行された当時は、仏語でしか読めなかった。
この後半を読むと分かるが、昔は代数幾何でスキームは使っていない。
一松本より前に刊行された和書の多様体の本って他に何があるんだろうね。
思い付くのは、現代数学演習叢書の位相幾何学か。

436:現代数学の系譜11 ガロア理論を読む
17/05/30 18:13:00.77 fHaelpbN.net
>>396 補足

”固体力学”について、主に弾性力学の問題になるが、材料の亀裂を考えた場合
亀裂先端は無限小(つまり亀裂先端の曲率半径R=0)と考えて、応力集中は無限大になる特異点を含む解析になる

そういう


437:場合にどう数理的にどう扱うかは、昔からいろいろ考えられている。例えば下記など 下記なども、最後は有限要素法などの数値解析に乗せるのだが、乗せる前に無次元化をしておくと、見通しがよくなるって話 理系なら、ここらがすらすら読める程度の数学力は欲しいねと(^^ http://catalog.lib.kyushu-u.ac.jp/ja/recordID/1500725?hit=1&caller=xc-search http://catalog.lib.kyushu-u.ac.jp/handle/2324/1500725/eng2460.pdf 無次元数の導入による線形破壊力学の適用範囲の拡張 石名 敏之 博士論文 2014 九州大学



438:現代数学の系譜11 ガロア理論を読む
17/05/30 18:19:46.44 fHaelpbN.net
>>398
>年は取っていないが、年齢は不詳ということで。

>ポントリャーギンの連続群論と Chevalley の Theory of Lie groups Ⅰ (和訳あり) は手元にある。
>どっちも松島多様体入門にリー群の参考文献として挙げられている。

ああ、おっちゃんもマニアックやね~(^^

>この後半を読むと分かるが、昔は代数幾何でスキームは使っていない。
>一松本より前に刊行された和書の多様体の本って他に何があるんだろうね。

一松本より前か・・、しらんな~
けど、いわゆる戦後というやつで、敗戦が1945年やからね・・、当時大変やったみたやね
だから、少ないだろうね(^^

439:132人目の素数さん
17/05/30 18:20:53.56 Rh34EVgW.net
>>393
ちなみに、ポントリャーギンの連続群論と Chevalley の Theory of Lie groups Ⅰ (和訳あり) は、ワイルの古典群に行き着く。

440:現代数学の系譜11 ガロア理論を読む
17/05/30 18:21:29.70 fHaelpbN.net
>>399 訂正

そういう場合にどう数理的にどう扱うかは、昔からいろいろ考えられている。例えば下記など
 ↓
そういう場合に数理的にどう扱うかは、昔からいろいろ考えられている。例えば下記など

441:132人目の素数さん
17/05/30 18:24:19.70 Rh34EVgW.net
>>400
リー群とか表現論は広過ぎて、或る特定の分野に分類することはほぼ不可能になる。

442:現代数学の系譜11 ガロア理論を読む
17/05/30 18:27:13.90 fHaelpbN.net
>>391
おっちゃん、どうも、スレ主です。

>C^n と R^{2n} nは正整数 とは加法について同型だから、何か適切なことをすれば、
>4次元空間の物理で役立ちそうな気はするが。

ああ、そうやね
それに、4元数とか8元数の物理なんて話もある。過去スレで紹介してあるけどね(^^

443:132人目の素数さん
17/05/30 18:31:24.58 Rh34EVgW.net
もう、おっちゃん寝る。

444:132人目の素数さん
17/05/30 18:35:32.21 Rh34EVgW.net
>>393
>>398の訂正:
ヴェイユのケーラー多様体入門 → ヴェイユのケーラー多様体「論」入門
じゃ、寝る。

445:現代数学の系譜11 ガロア理論を読む
17/05/30 18:46:32.33 fHaelpbN.net
>>394
おっちゃん、どうも、スレ主です。
”ハルトーグスの逆問題”か・・、下記検索ヒットやね
「「層」が何がなんだかよく理解できなかった」と書いてあるね~(^^
確かに、私もいまだに理解したとは言えない・・

あれ、茎と芽(群や環)とコホモロジーとその他いろいろセットものやね~(^^
ああいう抽象的なセットもの概念は、”部分が分からんと全体が分からん”。けど、”全体が分からんと部分がどうなっているか分からん”と。だから結局分からんのだと・・(^^

ようやく、ここまで分かった・・(^^
まあ、凡人は(最初から順に読む方式で)一回読んで分かろうとするのが無理だと思うよ・・(^^
繰り返しだな・・

URLリンク(d.hatena.ne.jp)
多変数函数論最高の名著の復刊 pseudomathematician 生命の燃焼 2016-05-23
(抜粋)
遂に一松信先生の超名著「多変数解析函数論」が復刊します。

古典的な多変数函数論を初歩からしっかりと学べるのはこの本ぐらいでしょうし、内容も教育的に配慮が行き届いた構成になっています。

古書店ではかなりの高額で取引されているし、入荷されたらすぐ売り切れるという状態なのでこの復刊は学生にとってはかなり有意義なものとなるでしょう。

振り返ってみると、私の大学の卒業論文は「クザンの問題」「近似の問題」「ハルトーグスの逆問題(レヴィの問題)」の学習レポートとするべく、本書を読み始めましたが、第8章ぐらいまでしか読めていません。
それは、「層」が何がなんだかよく理解できなかったため、「層」を使わない西野利雄先生の本を代用したからです。私の「層」に対する理解は今も何も変わっていません。なので、書評はできません。是非、本書を手にとって


446:直接読んでいただければと思います。私もこれを契機にもう一度チャレンジしてみたいと考えています。



447:現代数学の系譜11 ガロア理論を読む
17/05/30 18:57:45.82 fHaelpbN.net
>>407 補足

pseudomathematician 生命の燃焼さんのガロワ理論入門がある
スレタイの手前貼っておくね~(^^

URLリンク(d.hatena.ne.jp)
ガロワ理論入門10 2017-04-30 pseudomathematician 生命の燃焼

ガロワ理論で1冊以下を参考にします。

ガロワと方程式 (すうがくぶっくす)
作者: 草場公邦
出版社/メーカー: 朝倉書店
発売日: 1989/07

これは大学2年生のときに購入して途中まで読んでいたものです。かなり初等的なところからレベルを上げすぎないように懇切丁寧に書かれていて、ガロワ理論入門書では真っ先にお勧めできる本です。最近、寝床で30分ほど読んでいました。これを参考にしていきたいと思います。

448:現代数学の系譜11 ガロア理論を読む
17/05/30 18:58:51.92 fHaelpbN.net
>>405-406
おっちゃん、どうも、スレ主です。
お休みなさい(^^

449:現代数学の系譜11 ガロア理論を読む
17/05/30 19:00:19.36 fHaelpbN.net
>>401 >>403

おっちゃん、どうも、スレ主です。
情報ありがとう(^^

450:現代数学の系譜11 ガロア理論を読む
17/05/30 19:09:42.95 fHaelpbN.net
>>407 つづき

”ハルトーグスの逆問題”下記か・・(^^
URLリンク(reuler.blog108.fc2.com)
倉田先生の「多変数関数論を学ぶ」を読む 13 レヴィの問題とハルトークスの逆問題 日々のつれづれ 2012-03-20
(抜粋)
 多変数関数論の形成史を回想した倉田先生は、第4回の終りがけで「K.Okaの登場」という一節を設け、いよいよ岡先生を語り始めました。ベーンケとツレンの著作が刊行されたのが1934年ですが、この書物はこの時期までの研究状況を網羅して、未解決の諸問題を提起するところにねらいがありました。

岡先生がハルトークスの意味において擬凸状と呼んだ領域はどのような領域なのかというと、岡先生の第4番目の論文に定義が記されていて、倉田先生はそれを紹介しています。
それを再現すると、複素数の空間C^n内の領域Dの各々の境界点Pの近傍においてDの補集合Eがハルトークスの連続性定理をみたし、しかもその性質はPの近傍における解析的変換に対して不変であるとき、領域Dのことをハルトークスの意味で擬凸状であるというのです。

 ハルトークスが示した通り、正則領域ではハルトークスの連続性定理が成立するのですから、正則領域がハルトークスの意味で擬凸状であるのは明らかなのですが、その逆を問うたところに岡先生の創意があります。
ハルトークスの連続性定理そのものは解析関数の特異点が孤立しないことを示しているだけのことにすぎないのですが、その表現様式に著しい特徴があり、正則領域のある種の凸性が示唆されています。それを見抜いたのはレヴィで、その洞察の中からレヴィの問題が生まれました。

 ところが岡先生はレヴィの問題そのものから出発したのではなく、レヴィの洞察に示唆されて、ハルトークスの連続性定理の表現様式には何かしら正則領域の凸性がひそんでいることを感知したのではないかと思います。
それでその凸性を抽出して、そのうえでレヴィの問題のように逆問題を考えようとしたのであろうと思われますが、凸性の概念規定としてハルトークスの連続性定理そのものを採るというのはあまりにも完璧な、途方もない一般化というほかはなく、連続性定理の本性をよほど深く見通していなければできない芸当です。

451:132人目の素数さん
17/05/30 19:15:51.12 8LnxeKgu.net
>>395
>1/2+1/4+1/8+……=1と書かれていても、
>1/2+1/4+1/8+……→1という意味なのである(笑

その論法は>>252で既に論破しているので通用しない。

そして、これ以上は もは


452:や同じことの繰り返しである。 お前が主張する内容は >>250, >>252, >>265 あたりのレスで 完全に論破されている。お前はこれらのレスに対して反論の術を持たず、 >>250のA君と全く同じバカげた行為を繰り返すのみである。 いい加減に底が知れて相手するのも つまらない。 既存の定義を勝手に書き換えて捏造してしまう お前のような くだらない人間には、もう何も話すことはない。 そのような態度では会話が成立しないからな。 これ以降、お前のレスは完全に無視する。このレスにも返答は不要である。 あとは勝手に自己流の捏造定義でも垂れ流していればよい。 最後に1つだけ言っておこう。 今や 2ch は廃墟同然なので、こんなところにいくら書き込んでも本の宣伝にはならないぞ。 まあどこで宣伝しても誰も買わないだろうけどなw



453:132人目の素数さん
17/05/30 19:17:05.55 vsuKCQ5v.net
>>385

>>300の質問「あいてない1列の決定番号が、他の99列より大きい確率は
 (いかなる根拠で)1だと認めるんですか?」はまさに「箱入り無数目」の
記事が成り立たない!」という前提の上で成り立たざるを得ない結論の、
数学的根拠を問うています。
(但し「記事が成り立たない」自体を論拠に使うのは論点先取)

「ガロ」氏は議論に参加する必要がありますね

>>300は「「箱入り無数目」記事が成り立たない」
と前提してますから共有できてます

「ガロ」氏はこの問いを避ける理由がありません
具体的にはこのスレで答える必要があります

残念ですが、逃亡は無理ですよ

454:132人目の素数さん
17/05/30 19:19:45.02 vsuKCQ5v.net
>>388
>1.確率論を測度論をベースに展開する必要が無い
>1に関していうと「箱入り無数目」の解法は,
>現在の測度論から導かれる解釈のほうが自然.

「あいてない1列の決定番号が、他の99列より大きい確率は1」
という結論が、現在の測度論から証明できるんですか?

無限列から決定番号への関数が非可測であるにもかかわらず
「あいてない1列の決定番号が、他の99列より大きい確率は1」
という結論が測度論から得られる、というのは驚異です

455:132人目の素数さん
17/05/30 19:24:10.53 KiknoR5a.net
素人爺さんウイルス感染したんか

456:132人目の素数さん
17/05/30 19:24:58.05 vsuKCQ5v.net
>>391
>複素変数zは z=x+yi (x,y は実変数) と表わされて
高校で習いますね

>C^n と R^{2n} (nは正整数) とは加法について同型だから
加法だけね

>何か適切なことをすれば、 4次元空間の物理で役立ちそうな気はするが。
複素微分可能と実微分可能の違いは御存じですか?
一変数複素関数論で真っ先に習うことですが

457:
17/05/30 19:30:22.58 5Lzj2YmZ.net
>>408
おお,これは石井本の次に読む本だ!

458:132人目の素数さん
17/05/30 19:47:23.22 vsuKCQ5v.net
>>396
>一松本より前に刊行された和書の多様体の本
一松の本って多様体じゃなくて「多変数解析函数論」でしょ

個人的には田村一郎の「微分位相幾何学」(岩波講座 基礎数学)だな
だいぶ新しいけど(といっても1977年)
Iは古典的な埋め込み定理
IIはWhitneyのトリックを使ったhコボルダント定理
IIIは特性類とコボルディズム理論、異種球面のさわり
今は完全に古書だな 

459:132人目の素数さん
17/05/30 20:00:35.35 vsuKCQ5v.net
>>404
>4元数とか8元数の物理なんて話もある。

R、C、H・・・クリフォード代数か?

そういうのを見ると、ついついボット(Bott)の周期性定理なんて思い出す
このあたりのことは佐久間一浩氏の「数”8”の神秘」を読んでください

460:132人目の素数さん
17/05/30 20:15:11.11 vsuKCQ5v.net
ところで、微分方程式への応用考えるんなら
柏原正樹の代数解析の本とか
読んだほうがいいんじゃない 
あれも層とか出てくるけど

461:132人目の素数さん
17/05/30 20:25:55.41 B7sfy61+.net
>>388
> 非可測集合を用いても良いということが、明確になるような議論がありがたいね。
> 「xxだから、非可測集合を用いても良い!」という明言がないのさびしいね

出題者が任意の無限数列を出題


462:することが可能という仮定に含まれる 出題者は非可測集合を用いないと無限数列を一つ指定できない (数列のシッポの情報がなければ2つの無限数列を区別できない) サイコロの場合は{1, 2, 3, 4, 5, 6}^N/~の代表元を用いないと無限数列を一つ指定できない 有理数バージョンの場合は既約分数(互いに素な自然数2つ)を指定すれば良い



463:132人目の素数さん
17/05/30 20:40:43.99 vsuKCQ5v.net
>>421
>出題者は非可測集合を用いないと無限数列を一つ指定できない

意味不明

無限数列を「しっぽが同じなら同値」という関係で割って
代表元の数列を決めると、代表元の全体は非可測集合になる
ってことでしょ

>サイコロの場合は{1, 2, 3, 4, 5, 6}^N/~の代表元を用いないと無限数列を一つ指定できない

これまた意味不明

無限数列の同値類に対してその要素(無限数列)の一つを指定したものが
同値類の代表元だよ

464:現代数学の系譜11 ガロア理論を読む
17/05/30 21:18:33.25 fHaelpbN.net
>>338 関連
>アインシュタインの相対性理論の論文には参考文献がなかったらしい

情報ありがとう
ここ、調べてみました
下記に原論文がありますね(思った通り(^^)

1905年(奇跡の年)の特殊相対性理論の論文2編。最初のは参考文献なし。後のは、最初の自分の論文を引用していたね(^^
1905年(奇跡の年)の他の論文もダウンロードして見たが、引用文献すくないね。多くてせいぜい5つくらいか(^^

が、これは当時の標準であって、21世紀の現在まねすべきではないだろう(^^
また、この時代は、引用文献のスタイルが古く、引用箇所のページの下に脚注として入れるスタイルになっているね(現在は論文の最後に纏めるスタイルだが)

なお、下の1915年 論文『水星の近日点の移動に対する一般相対性理論による説明[注 4]』が、その上のアインシュタインの原論文リストに含まれていないのが不思議だね

URLリンク(ja.wikipedia.org)
アインシュタインの原論文
(抜粋)
1905年(奇跡の年)

URLリンク(ja.wikipedia.org)
一般相対性理論
(抜粋)
1915年 論文『水星の近日点の移動に対する一般相対性理論による説明[注 4]』(S.B. Preuss. Akad. Wiss., 831-839)

465:132人目の素数さん
17/05/30 21:27:33.58 vsuKCQ5v.net
引用で正当化するとか文系の考え方だよ

466:132人目の素数さん
17/05/30 21:40:48.28 B7sfy61+.net
>>422
「無限数列を一つ指定」 = 箱の中の数字を全て決定(確定)する という意味で書いています

解答者は箱に入った数字を見て完全代表系が入った袋から代表元を一つ取り出して決定番号を求めるが
出題者は(解答作業とは逆に)完全代表系が入った袋から代表元を一つ取り出すことで(シッポが同じということで)
数列のシッポの部分の数字を全て決定(確定)したとみなす

467:現代数学の系譜11 ガロア理論を読む
17/05/30 21:54:47.29 fHaelpbN.net
>>340 もどる
>>セールが受賞したのはトポロジーの業績でしたが
>>その後、彼は、代数幾何に転向してそこでも

ジャン=ピエール・セール:
はじめは複素解析や代数トポロジーを研究した。28歳の若さでフィールズ賞を受賞。その後代数幾何学に傾倒していき、グロタンディークに多くの示唆を与え、SGA(英語版)4&5で作成された道具がヴェイユ予想に大きく貢献した。

Fields Medal:1954 Jean-Pierre Serre "Achieved major results on the homotopy groups of spheres, especially in his use of the method of spectral sequences. Reformulated and extended some of the main


468:results of complex variable theory in terms of sheaves." まあ、細かい話ですがね。 上記および下記によれば、セールもヴェイユ予想を解決しようとしていたんだろうと(^^ https://ja.wikipedia.org/wiki/%E4%BB%A3%E6%95%B0%E5%B9%BE%E4%BD%95%E5%AD%A6 代数幾何学 https://ja.wikipedia.org/wiki/%E6%A6%82%E5%9E%8B 数学における概型あるいはスキーム (英: scheme) (抜粋) 1950年代に、ジャン=ピエール・セール (Jean-Pierre Serre)、クロード・シュヴァレー (Claude Chevalley) や永田雅宜は、数論と代数幾何学に関連するヴェイユ予想に大きく動機付けられ、同じように点としての素イデアルというアプローチを追及した。



469:132人目の素数さん
17/05/30 21:56:24.35 vsuKCQ5v.net
>>425
>完全代表系が入った袋から

完全て何?

>出題者は・・・代表元を一つ取り出すことで
>数列のシッポの部分の数字を全て決定(確定)したとみなす

どこから先がしっぽですか?

470:132人目の素数さん
17/05/30 22:02:17.30 vsuKCQ5v.net
「ガロ」氏に贈る歌
URLリンク(www.youtube.com)

特に意味はない・・・

471:132人目の素数さん
17/05/30 22:06:22.85 vsuKCQ5v.net
>「学問の基本は自分を信用しないこと」で勉強して来た人は、不幸だね(^^

学者は大抵不幸だよ 幸せになるために学問する人はいない

学問みたいな難しいことに頭を使わないのが幸せなんだよ

何のとりえもない凡人であることが幸せなんだよ

472:132人目の素数さん
17/05/30 22:09:53.43 vsuKCQ5v.net
>CADは設計、CAMは製造、CAEは技術

CAPというのもある

URLリンク(en.wikipedia.org)

473:現代数学の系譜11 ガロア理論を読む
17/05/30 22:12:56.82 fHaelpbN.net
>>424
ID:vsuKCQ5さん、どうも。スレ主です。

理系は、2CHバカ板の名無しさん相手に、まっとうな数学議論をしようとは思わないですよ~(^^
そもそも、数学記号がまともに書けないですよね。可能なのは、せいぜい文系レベルの数学でしょ(^^
なので、引用の方が値打ちありと思っています。自分のメモとしてもね(^^

474:132人目の素数さん
17/05/30 22:13:16.27 vsuKCQ5v.net
>ローレンツ変換がミンコフスキー空間上での虚数角 iθ の回転に相当する

双曲的変換を「虚数角度の回転」って言葉で
回転だと正当化するのは詭弁にあたる

475:現代数学の系譜11 ガロア理論を読む
17/05/30 22:14:42.17 fHaelpbN.net
>>430
ID:vsuKCQ5vさん、どうも。スレ主です。
CAP面白いですね(^^

476:132人目の素数さん
17/05/30 22:14:54.96 vsuKCQ5v.net
>>431
引用は文系Low Level Personのすることだと思わないか?
ようするに他人の言葉の泥棒だろ?

477:132人目の素数さん
17/05/30 22:24:19.71 vsuKCQ5v.net
理系High Level Personは、引用しない
正しさは論理が示してくれる 

478:現代数学の系譜11 ガロア理論を読む
17/05/30 22:24:31.12 fHaelpbN.net
>>432
>双曲的変換を「虚数角度の回転」って言葉で
>回転だと正当化するのは詭弁にあたる

どうぞ
そう思うのはご勝手ですが
>>386 で引用した wikipedia ローレンツ変換 の筆者の意図は>>386だと思った次第ですよ

479:132人目の素数さん
17/05/30 22:26:34.48 vsuKCQ5v.net
>>436
他人の言葉を鵜呑みにする文系LLPには困ったものだ

480:現代数学の系譜11 ガロア理論を読む
17/05/30 22:28:09.47 fHaelpbN.net
>>434-435
>理系High Level Personは、引用しない
>正しさは論理が示してくれる 

私は、理系 Low Level Personですからね
私の考えたことくらい、もっと賢い人が、きっと以前に書いていると・・
で、引用すれば、自分で筆を起こすより楽なんです~(^^

481:132人目の素数さん
17/05/30 22:33:45.63 vsuKCQ5v.net
>>438
他人の文章を拝借するのは文系LLP
他人の公式を拝借するのは理系LLP

482:132人目の素数さん
17/05/30 22:35:08.42 vsuKCQ5v.net
>引用すれば、自分で筆を起こすより楽

そうやって人はアルツハイマー症になる

483:132人目の素数さん
17/05/30 22:39:22.13 vsuKCQ5v.net
楽したがる人は賢くならない

もちろん賢くなくても生きるのには困らない

つまらぬ見栄を張らなくなれば幸せになれる

見栄は人を不幸にする

484:132人目の素数さん
17/05/30 22:42:28.41 vsuKCQ5v.net
何もやる気がないのに、自分は優れているといいたがるのは、不幸だ

何もしなくても困らないのなら、優れていると自慢する必要はない

だいたい他人の自慢を聞いて喜ぶ人はいない

しかし自慢する人は他人の自慢には不快になるのに

自分の自慢で相手も同じように思うとは想像できないらしい

485:132人目の素数さん
17/05/30 22:45:37.66 vsuKCQ5v.net
「2chにはバカが多い」といってる人は自分だけは例外だと思ってるらしい

しかし2chにいるのは実はそんな人ばかりである

自分がバカだと気づけるほどリコウになったら2chを卒業するものだ

もっとも中にはバカを観察するのが面白いという変態もいるらしいが

486:132人目の素数さん
17/05/30 22:51:41.74 vsuKCQ5v.net
2chで痛々しいほどの自慢をする人を見るとなぜか涙が出てくる

きっと不遇だからだ 幸せな人は自慢しない だいたい2chには来ない

私が2chに来るのは自分と同じ不遇な人を見たいからかもしれない

487:現代数学の系譜11 ガロア理論を読む
17/05/30 23:10:35.66 fHaelpbN.net
>>437
どうも。スレ主です。

憲法の保障する表現の自由がありますからね~

「この表現を用いると、ローレンツ変換がミンコフスキー空間上での虚数角 iθ の回転に相当することが容易に理解できる。」(ローレンツ変換) URLリンク(ja.wikipedia.org)

488:現代数学の系譜11 ガロア理論を読む
17/05/30 23:12:06.97 fHaelpbN.net
>>440-444
どうも。スレ主です。
多弁ですね。ご苦労さまです(^^

489:132人目の素数さん
17/05/30 23:20:22.07 B7sfy61+.net
>>427
> 完全て何?
全部の同値類から一つずつ代表元を取り出したということ

スレ主は極限を用いて
> サイコロを振って、箱に数を入れる
> 数列 X1,X2,・・・Xi,・・・Xn n→∞
としているから任意の無限数列Xnにおいて上の極限が収束するのであればある無限数列rnがあり
ある自然数Dがあってn > Dなる全ての自然数に対して |Xn - rn| = 0 となる

> どこから先がしっぽですか?
n > DとなるXnが数列のシッポでありX(D+1)から先がシッポ

490:現代数学の系譜11 ガロア理論を読む
17/05/30 23:23:43.17 fHaelpbN.net
>>429
どうも。スレ主です。
リベラルアーツ知っていますか?

下記、ギリシャ・ローマ時代”算術・幾何(幾何学、図形の学問)”が入っている
”リベラル・アーツという表現の原義は「人を自由にする学問」”

欧米では、学問は、こういうとらえ方らしいです

URLリンク(ja.wikipedia.org)
リベラル・アーツ

リベラル・アーツ(英: liberal arts)とは、
・ギリシャ・ローマ時代に理念的な源流を持ち、ヨーロッパの大学制度において中世以降、19世紀後半や20世紀まで[注釈 1]、人が持つ必要がある技芸(実践的な知識・学問)の基本と見なされた自由七科のことである。具体的には文法学・修辞学・論理学の3学、および算術・幾何(幾何学、図形の学問)・天文学[注釈 2]・音楽[注釈 3]の4科のこと。
・最近では、そうした伝統的な科目群の位置づけや内容に現代的な学問の成果を加え、やはり大学で誰もが身に付けるべき基礎教養的科目だと見なした一定の科目群に与えられた名称で、より具体的には学士課程における基礎分野 (disciplines) のことを意味する。
この現代的な分類では、人文科学、自然科学、社会科学、及びそれぞれの一部とみなされる内容が包括されることになる。
本項では上の両者について述べる。

概説
リベラル・アーツという表現の原義は「人を自由にする学問」で、それを学ぶことで一般教養が身につくもののことであり、こうした考え方の定義としての起源は古代ギリシアにまでさかのぼる。
欧米、とくにアメリカ合衆国では、おもに専門職大学院に進学するための基礎教育としての性格も帯びているともされている。
なお日本語の「藝術」という言葉はもともと、明治時代に啓蒙家の西周によってリベラル・アートの訳語として�


491:「語されたものである。



492:現代数学の系譜11 ガロア理論を読む
17/05/30 23:31:02.37 fHaelpbN.net
>>421
>出題者は非可測集合を用いないと無限数列を一つ指定できない

独り言
ロジックが変

493:現代数学の系譜11 ガロア理論を読む
17/05/30 23:32:08.06 fHaelpbN.net
>>420
書店で見たが、柏原正樹の代数解析の本は、難しすぎるし
そもそも、面白そうじゃなかったね(^^

494:現代数学の系譜11 ガロア理論を読む
17/05/30 23:36:09.96 fHaelpbN.net
>>419
どうも。スレ主です。
これか・・

URLリンク(www.amazon.co.jp)
数“8"の神秘: 8という数に秘められた不思議な関係 単行本(ソフトカバー) ? 2013/8/9
佐久間一浩 (著)

URLリンク(www.nippyo.co.jp)
内容紹介
‘8’という数を通して見え隠れする興味深い性質を、8つのテーマから探る。幾何学や代数学の意外な繋がりも見えてくる。
目次
第1章 次元に秘められた‘8’の奥義

第2章 球面に秘められた‘8’の奥義

第3章 代数に秘められた‘8’の奥義

第4章 符号数に秘められた‘8’の奥義

第5章 不変量に秘められた‘8’の奥義

第6章 結び目に秘められた‘8’の奥義

第7章 ホモトピー群に秘められた‘8’の奥義

第8章 特異点に秘められた‘8’の奥義

付録A ホップ写像の構成について

495:現代数学の系譜11 ガロア理論を読む
17/05/30 23:41:59.62 fHaelpbN.net
>>419
どうも。スレ主です。
”ボット(Bott)の周期性定理”これか・・

URLリンク(ja.wikipedia.org)
モース理論
(抜粋)
モースの元来の応用は、測地線の理論(経路上のエネルギー汎函数の臨界点への応用であった。これらのテクニックは、ラウル・ボット (Raoul Bott) の周期性定理(英語版)の証明に使われた。
モース理論の複素多様体での類似が、ピカール・レフシェッツ理論である。

URLリンク(www.wikiwand.com)
K理論
(抜粋)
K-理論は、位相空間やスキームに対して環を対応させる K-函手の族を構成する。これらの環は、元の空間やスキームの構造のいくつかの側面を反映している。
代数トポロジーにおいてホモロジーやコホモロジーといった群への函手を考えるのと同様に、元の空間やスキームを直接調べるよりもこのような環の方が容易に種々の性質をしらべることができる。
K-理論のアプローチから得られる結果の例としては、ボットの周期性(英語版)(Bott periodicity)やアティヤ=シンガーの指数定理やアダムズ作用素(英語版)(Adams operation)がある。

高エネルギー物理学では、K-理論、特にツイストした K-理論(英語版)(twisted K-theory)は、II-型弦理論に現れる。
そこでは、K-理論が、Dブレーンやラモン-ラモン場(英語版)(Ramond?Ramond field)の強さ、一般化された複素多様体上のスピノルを分類すると予想されている。
物性物理学では、K-理論は、トポロジカル絶縁体、超伝導や安定フェルミ面を分類することに使われる。詳細はK-理論 (物理学)(英語版)(K-theory (physics))の項を参照。

496:現代数学の系譜11 ガロア理論を読む
17/05/30 23:48:50.24 fHaelpbN.net
>>417
C++さん、どうも。スレ主です。
勉強すすんでますか?(^^

ご存知と思うが、下記
勿論、私の書棚にもありますよ~(^^
書棚の肥やしですが(^^

URLリンク(d.hatena.ne.jp)
hiroyukikojimaの日記
2008-03-27 ガロアの定理をわかりたいならば
(抜粋)
ガロワと方程式 (すうがくぶっくす)
作者: 草場公邦
出版社/メーカー: 朝倉書店

どれもすばらしいが、とりわけ最初の『ガロワと方程式』はめちゃめちゃいい。ガロア理論とは栄光なき天才たち - hiroyukikojimaの日記で紹介した二十歳で決闘で死んだ薄命の天才ガロアの生み出した理論である。
( ちなみにフランス語では、ガロワと発音するのが正しいらしく、草場先生はわざとそういう表記を使っているが、日本では一般にガロアが流布している) 。
これは、「5次以上の方程式には解の公式が存在しない」ということを証明するために編み出された理論であり、現代代数の先駆けとなったスゴモノである。(ちなみに誤解を最小限にするために言っておくと、何次方程式でも必ず複素数の解を持っている。
問題は、それをオートマチックに求める公式があるかどうかであり、5次以上にはそういう便利な公式がない、というのがガロアの定理なのである) 。

ぼくは、数学科のときは代数を専攻したので、ガロア理論は必須の道具であり、一生懸命勉強したのだけど、最終的に「身体でわかった!」というところにたどり着くことができなかった。
おおざっぱには捉えることはできたんだけど、機微が掴めておらず、少なくとも「アタリマエ」になるほどには理解していなかったのである。( そんなだから数学の道に挫折することになったのだけどね)。

ところが、最近になってこの『ガロワと方程式』を読んで、急に視界が開け、「アタリマエ」とまではいわないけど、「よくできた自然な理論だなあ」というところまで理解できるようになってしまったのだ。数学科で勉強していた頃から見れば、もう四半世紀も過ぎて達した境地というのもスゴイやら情けないやらである。

497:132人目の素数さん
17/05/31 00:44:40.31 x2dUK0SZ.net
>5次以上にはそういう便利な公式がない、というのがガロアの定理なのである
それはアーベル-ルフィニの定理でしょ。しかも単に根号で解けないという
だけで、「特殊函数」を使えば、オートマチックに解を表示できる公式は
あったはず。でも、そこは大して重要なことじゃない。
重要なのは群の作用を考えたこと。ユークリッド運動群など潜在的には
昔からあったのだが、ガロア理論で群の作用が意識されたことで
より広汎な幾何学的な群作用なども意識されていったという流れは
あると思う。
ガロア理論自体も幾何学的に捉えることができるし。
ガロア自身、リーマン面に近いことを考えていたことは確からしく
幾何学的なイメージを持っていたことは確実だろう。

498:132人目の素数さん
17/05/31 01:05:23.17 +j7CN1eR.net
特殊相対性理論は、もともとマックスウェルの方程式が
ローレンツ変換で不変であることが嚆矢になってるんでしょ。
この群作用と対称性の美しさを理解していれば
日常感覚とは異なるなどのつまらない理由で
「相対性理論を否定しよう」などとは思わないのではなかろうか。

499:132人目の素数さん
17/05/31 05:14:03.97 CHwSD1ir.net
>>416
おっちゃんです。
>複素微分可能と実微分可能の違いは御存じですか?
>一変数複素関数論で真っ先に習うことですが
数学科卒ではなく、習うかどうかの事情は知らないけど、
違いは、複素平面上において1点に向けて渦状の曲線を描きながら近似する(一変数複素関数の微分)か、
実軸上において1点(実数)に向けて一方向から線形近似(実関数の微分)をするか。

500:132人目の素数さん
17/05/31 05:23:13.20 CHwSD1ir.net
>>416
>>456の訂正:
下から2行目:渦状の曲線を描きながら近似する(一変数複素関数の微分)か → 「必ず」渦状の曲線を描きながら近似「出来る」(一変数複素関数の微分)か
下から1行目:一方向から線形近似(実関数の微分)をするか → 一方向から線形近似(実関数の微分)「だけが出来る」か

501:132人目の素数さん
17/05/31 06:32:32.95 fJPHPMPA.net
>>456
一変数複素関数論は理工系の他の学科でも習うよ 
全部とは言わないけど

>渦状の曲線を描きながら

それは斜航的な場合ですね
確かに微係数が一般的な複素数ならそうなります
ちなみに実数なら放射的な直線、
絶対値1の複素数なら円を描きます

重要なのは複素微分可能な変換では角度が保たれる点です
理由は直観的にも明らかです
なぜならいかなる複素数倍の変換も角度を保ちますから
微分によって(複素)線形変換に近似できるなら角度が変わりようがない

2変数の実微分可能変換ではそうはならない
実線形変換に近似でき�


502:黷ホいいのであって その中には角度を保たないものもあるのだから



503:132人目の素数さん
17/05/31 06:38:57.82 fJPHPMPA.net
>>454
>何次方程式でも必ず複素数の解を持っている。

しかもn次なら必ずn個持ってる(注:重解の個数も数える)

n次多項式関数は、リーマン球面をn回被覆する、と考えれば
そりゃそうだろうと思える 

「オートマチックな公式」の存在ってそんなに重要ではないだろう
数値解法でいくらでも正確に解の存在範囲が限定できるのだから
実用上はそれで十分である 
根号で表したって結局は数値計算するんだから

504:132人目の素数さん
17/05/31 06:44:49.41 fJPHPMPA.net
>>450
>柏原正樹の代数解析の本は、難しすぎるし
>そもそも、面白そうじゃなかったね(^^

個人的には
柏原正樹の代数解析の本を
一松の多変数関数論の本に
置き換えるとそっくりそのままw

たしかにいきなり柏原の本はキツイので
このあたりからで如何でしょうか?
URLリンク(www.asakura.co.jp)

505:132人目の素数さん
17/05/31 06:45:34.86 CHwSD1ir.net
>>458
いや、理系の学科卒ではあるけど、
高校以降、授業は黒板の写しと早口の説明ばかりで、
聞いてもムダだと思って殆ど聞いていなかった。
高校以降、数学は殆ど独学。
マトモな説明どうもありがとうございます。

506:132人目の素数さん
17/05/31 07:01:43.12 fJPHPMPA.net
蛇足ですが、b-関数の源が

d(x^(s+1))/dx=(s+1)x^s

だと知ったとき あまりのプリミティブさに驚いた
これが本当の意味での”センス”というものだろう

507:132人目の素数さん
17/05/31 07:05:34.16 fJPHPMPA.net
>>461
数学科でも同じですよ
だから学生は講義には出ません
出ても大抵内職してます

508:132人目の素数さん
17/05/31 07:12:09.65 CHwSD1ir.net
>>463
>出ても大抵内職してます
やはり、そうですよね。
だけど、何故内職しているのに講義で説明された事項が分かるんですか?
内職中は独学に集中して考えたりしませんか?

509:現代数学の系譜11 ガロア理論を読む
17/05/31 10:12:21.64 105ZXXC5.net
>>460
どうも。スレ主です。
情報ありがとう
これ面白そうやね
何となく読めそうだ(^^

URLリンク(www.asakura.co.jp)
シリーズ: すうがくの風景 5
D加群と計算数学
A5/208ページ/2002年02月28日
大阿久俊則 著

線形常微分方程式の発展としてのD加群理論の初歩を計算数学の立場から平易に解説〔内容〕微分方程式を線形代数で考える/環と加群の言葉では?/微分作用素環とグレブナー基底/多項式の巾とb関数/D加群の制限と積分/数式処理システム

目次
1. 微分方程式を線形代数で考える
 1.1 線形写像と連立1次方程式-ガウスの消去法
 1.2 商ベクトル空間
 1.3 微分作用素
 1.4 微分方程式の多項式解
 1.5 微分方程式の巾級数解
 1.6 微分方程式の有理解
2. 環と加群の言葉では?
 2.1 微分作用素環
 2.2 D加群
 2.3 D加群の積分と多項式解
 2.4 D加群の制限と巾級数解
 2.5 有理関数とD加群
3. 微分作用素環とグレブナー基底
 3.1 微分作用素環とD加群
 3.2 微分作用素環の包合基底
 3.3 微分作用素環のグレブナー基底
 3.4 グレブナー基底の計算アルゴリズム
 3.5 斉次化によるグレブナー基底の計算
4. 多項式の巾とb関数
 4.1 多項式の巾とD加群
 4.2 b関数
 4.3 局所b関数と準素イデアル分解
5. D加群の制限と積分
 5.1 D加群の制限とその計算アルゴリズム
 5.2 局所コホモロジーヘの応用
 5.3 D加群の積分とその計算アルゴリズム
6.(付録)数式処理システムについて
 6.1 Risa/Asir
 6.2 kan/sml
7. あとがき
8. 索  引
9. 編集者との対話

510:現代数学の系譜11 ガロア理論を読む
17/05/31 10:35:24.63 105ZXXC5.net
>>460
どうも。スレ主です。

いきなりでもないんだが・・、おっと、小松彦三郎先生の佐藤超函数論入門が、PDFで落ちていたね(下記)
昔、修士1年のときに、阪大石橋の理学部のキャンパスに行ったときに、生協でこれ売っていたので、買ったが、むずだった(^^

で、随分前に書棚が狭くなって処分した(多変数の層理論がついて行けないこともあり・・)
まあ、いまどきの学生なら、斜め読みしたら(手書きで読みにくいが)、なにか得るところがあるだろうね・・(^^
(自分も時間があるときに、また読んでみようと思うが・・)

URLリンク(repository.kulib.kyoto-u.ac.jp)
コレクションホームページ
0188 佐藤超函数論入門 2
(URLリンク(hdl.handle.net))

URLリンク(repository.kulib.kyoto-u.ac.jp)
本文
Title 佐藤超函数論入門 (佐藤超函数論入門)
Author(s) 小松, 彦三郎; 矢野, 環
Citation 数理解析研究所講究録 (1973), 188: 1-174
URLリンク(repository.kulib.kyoto-u.ac.jp)
目次
同上

511:現代数学の系譜11 ガロア理論を読む
17/05/31 11:18:21.73 105ZXXC5.net
>>466 関連
なんでか、これ(下記)がヒットするんだな~(^^
年代が不明だが、京都大学数理解析研究所の所内報だろうねが、面白いね~
灘中灘高東大数学科で東大教員か・・。こういう人には尊敬の念を抱くが、ただの数学科に憧れ? んなわけないだろ・・(^^
URLリンク(www.ms.u-tokyo.ac.jp)
URLリンク(www.ms.u-tokyo.ac.jp)
「きっかけはいろんなこと」 小林俊行(京大数理研)東京大学
(抜粋)
大学に入って間もなく,金子晃先生が主催する佐藤超関数論のセミナーがあることを知りました. 1,2 年生を対象として前期に準備的な勉強をし,夏休みに原論文を輪講するというセミナーでした.参加することに決めたものの,もちろんわからないことの連続でした.
「佐藤超関数は,商空間の元として定義する」という一文に出会えば,商空間とは何だろうといった具合です.見当はずれの勉強もしましたが,それでも論文に書かれていることを理解したくて,食らいついてゆきました.
人生で最初に読んだ(読もうとした)数学の論文が佐藤幹夫先生の論文であり,数学科に進路を決める前に,貴重な経験をさせてくださった金子先生に感謝しています.

サークノレは物理学研究会に入りました. I物理学」とありますが,実際には数学愛好者が多数を占めるサークルでした.

3年生の関数論の講義では小松彦三郎先生が,夏休み前に「もしこの問題が解ける人がいたら,秋の期末試験は免除してあげよう」とおっしゃいました.
夏休みの大半を使い,コホモロジーをガリガリと計算して,ようやく解決することができました.
おかげで複素多様体や多変数関数論にも親しめました.ず、っと後に不連続群の研究をしているとき,思いがけず,この夏休みの経験が役に立つことになりました.
4年生の夏,数学者になれるかどうかの見通しは全くなかったけれども,大学院に進んで、勉強を続けたいと思い,修士課程の入試を受けました.面接は5分で終わるなごやかなものでしたが,終わりかけに司会の木村俊房先生が「修士論文を期待していますから頑張ってください」と声をかけてくださいました.
修士課程2年の秋,納


512:得のゆく修論が書けそうになく,自分は留年すべきなのではないか,と苦しみましたが,それでも何とか頑張れたのは,木村先生のこの一言が耳に残っていたからです. つづく



513:現代数学の系譜11 ガロア理論を読む
17/05/31 11:20:17.52 105ZXXC5.net
>>467 つづき

このころ,一度だけセミナ一発表がお休みになったことがありま
した.小石川植物園で聞かれる理学部のビア・パーティと時聞が重
なっていたので,そちらを優先させていただいたのです. 1週間ま
るまる暇になり,代数の勉強をお休みして, r領域の特性関数のフ
ーリエ変換が球対称な零点をもっとき,もとの領域は球か?Jとい
う問題を考えてみました.当時,この問題の背景は知らなかったの
ですが,ある工学部の先生がお尋ねになったとのことでした.後に
なって,この問題はある自由境界値問題(シッファー予想)や, 60
年以上未解決のままになっている積分幾何の問題(ポンペイユ予想)
とも同値だということを知りました.この1週間のお休みの聞に,
割合きれいな形でこの予想を部分的に証明できました.しかし,翌
週からは,また代数的表現論の勉強に没頭し,中断することになり
ました.

夏休みになって,またこの問題に取り組んでみました.自由な発
想、で白紙から考えたかったので,机に向かうのをやめ,毎日,海に
出かけてあれやこれやと問題の定式化そのものから考え直しました.
結局, Iフーリエ変換の零点から,もとの領域を復元する」という
問題に発展させて,それを考えてみることにしました.問題そのも
のを自由に組み立てて考えるという作業が楽しし領域を摂動した
り,零点の漸近挙動をみたり司モース理論を使ったりと,いろいろ
な発想を試みました.専門分野ではないので,論文にするつもりは
なかったのですが,大島先生にとにかく書いてみなさいと言われ,
100枚あまりにまとめました.これが修士論文の1つになりました.
(引用終り)

「100枚あまりにまとめました.これが修士論文の1つになりました.」って・・、他にも書いたってことかい?(^^

514:現代数学の系譜11 ガロア理論を読む
17/05/31 12:11:10.16 105ZXXC5.net
>>467
小林 俊行先生って、世界的な数学者やね~(^^
知らなかったよ・・
URLリンク(ja.wikipedia.org)
小林 俊行 (こばやし としゆき、1962年9月 - )は、日本の数学者。東京大学教授。理学博士(1990年)。大阪府大阪市出身[1]。

業績
工学者からの質問をきっかけとして、積分幾何の問題に取り組み、領域の変形の立場で、Pompeiu予想(1900年代初頭より未解決の問題)が正しいことを小林が証明したとき、小林はまだ修士の学生であった。
さらに領域の特性関数のフーリエ像の零集合の無限遠での漸近挙動から領域の形状を記述するという問題に発展させ、その非線形偏微分方程式を導いた。
正の定曲率を持つ完備なローレンツ多様体は決してコンパクトにはならないが、その一方で基本群は必ず有限群になる。この奇妙な現象はカラビ・マルクス現象と呼ばれるが、小林はこの現象の必要十分条件を示した。
これをきっかけとし、リーマン幾何の枠組みを超えた等質空間の不連続群論に小林は世界で最初に本格的に取り組み、その基盤作りを行った。
ユニタリ表現論における分岐則の離散分解可能モデルを提唱し、ユニタリ表現論における離散的分規則の理論を創始した。同理論を非可換調和解析に応用し離散系列表現を構成した。さらに保型形式論に応用しモジュラー多様体における消滅型定理の証明を与えた。
また離散群が等質空間にどう作用するかを研究し、そこから非リーマン等質空間における不連続群の変形を研究した (ローレンツ多様体に関するゴールドマン予想を一般化した上で解決を含む) 。
複素多様体における「可視的な作用」という概念を導入し、この新しい幾何学的立場の視点から、無限次元の場合と(組合せ論が絡む)重複度1の表現の統一理論を構築した。
無限次元の根源的な対称性である極小表現をモチーフとし、共形幾何学・シンプレクティック幾何学や調和解析・微分方程式などに多くの分野にまたがる大域解析の理論を興した。

515:現代数学の系譜11 ガロア理論を読む
17/05/31 12:49:41.92 105ZXXC5.net
>>469 関連

下記経歴と>>467のPDFの内容から、小林 俊行先生が、京都大学数理解析研究所助教授になられたころ、自己紹介を兼ねて書かれたんだろうと推察する。2001年ころか
URLリンク(researchmap.jp)
小林 俊行 J-GLOBAL 更新日: 16/11/04 10:06
(抜粋)
2003年 - 2007年3月
京都大学数理解析研究所教授
2001年 - 2003年
京都大学数理解析研究所助教授

516:現代数学の系譜11 ガロア理論を読む
17/05/31 13:06:58.50 105ZXXC5.net
>>465

大阿久 俊則先生これか。「D加群と計算数学」正誤表PDF、「グレブナ基底と線型偏微分方程式系(計算代数解析入門)」 上智大学数学講究録PDF、講義録 代数学特論AII(ガロア理論入門)PDF をピックアップしておくよ
URLリンク(kenkyu-db.twcu.ac.jp)
東京女子大学現代教養学部数理科学科数学専攻
教授
大阿久 俊則
オオアク トシノリ
Toshinori Oaku

経歴
東京大学 理学部 助手 1982/04/01-1986/08/31
横浜市立大学 助教授 1986/09/01-1999/03/31
東京女子大学 教授 1999/04/01
学歴
東京大学 理学部 数学科 1977/03 卒業
東京大学 理学系研究科 数学専攻 修士 1979/03 修了
東京大学 理学系研究科 数学専攻 博士 1982/03 修了

URLリンク(lab.twcu.ac.jp)
大阿久 俊則 (おおあく としのり)
東京女子大学 現代教養学部 数理科学科 数学専攻

2.「D加群と計算数学」 朝倉書店 (シリーズ:すうがくの風景 5)2002年2月発行. (正誤表PDF URLリンク(lab.twcu.ac.jp)
3.「グレブナ基底と線型偏微分方程式系(計算代数解析入門)」 上智大学数学講究録 No.38 (1994年11月). 改訂版PDF (2014年9月) URLリンク(lab.twcu.ac.jp)

講義録
代数学特論AII(ガロア理論入門) URLリンク(lab.twcu.ac.jp)

517:現代数学の系譜11 ガロア理論を読む
17/05/31 14:01:51.38 105ZXXC5.net
関係ないけど、ヒットしたので貼る(欲しい情報がヒットしないんだ・・(^^)
URLリンク(www.sist.ac.jp)
[PDF] 量子力学の数学形式は経験世界のいかなる原理に由来するのか
榛葉豊 - 静岡理工科大学紀要, 2014 - sist.ac.jp

518:132人目の素数さん
17/05/31 15:28:37.30 CHwSD1ir.net
>>465
スレ主は、佐藤幹夫の数学[増補版]を持っているのだろ。
それなら、その本を生かせばいい。
題名通り代数解析も含めて色々な記事が収録されていて、記事には参考文献があるだろう。
(マトモな)数学書より記事が読みにくいということはない筈だ。

519:132人目の素数さん
17/05/31 15:41:16.56 dprCAZQy.net
数列すら理解してないのに、高度な数学をかじったところで、分かったような気になるだけ

520:現代数学の系譜11 ガロア理論を読む
17/05/31 15:57:22.24 105ZXXC5.net
下記はC++さんのために貼っておくよ
(秋田大卒業か。PDFありがとう!)(もっとも、欲しい情報がヒットしないんだが・・(^^)
URLリンク(pel.es.hokudai)


521:.ac.jp/~akita/SignalAsDistribution.pdf シュワルツ超関数としての信号処理理論 (北海道大) 2014/09/12 (抜粋) 信号処理における数学はよくよく見ると怪しい印象を受けてしまう部分もある.私が気になったのは「フーリエ変換」の種類の多さである.実数全体で定義された周期的でない関数に対する,周波数ドメインへの変換が普通のフーリエ変換である.実数全体で定義された周期関数に対してはフーリエ級数展開が用いられる. そして離散時間信号に対しては,周期的でない信号については離散時間フーリエ変換が,周期的な信号については離散フーリエ変換が用いられる.このように,時間ドメインから周波数ドメインへの変換としてのフーリエ変換には実は4 種類存在するのである. いずれも計算方法は異なり,変換の結果得られる周波数の関数も実数全体で定義されたり離散的な周波数に対して値を持つものであったりで,さらには周期性を持つかどうかも4 つの変換それぞれで異なる. 確かにそれぞれ三角関数の基底による表現になっているとはいえ,それぞれの関連について説明がなければフーリエ変換の結果と離散フーリエ変換の結果をどう対応つけていいかすらもよくわからなくなる. 何より私はこの信号の種類に応じて個別に対応するという姿勢を全くもって美しくないと感じたのである.できることなら全ての信号をひとまとめにして一つの定義のフーリエ変換で信号処理を説明してほしい. その時自分なりに考えたのが,少し考えれば誰でも行き当たるであろうが,離散時間信号をδ 関数によって実数上に帰着する発想である. http://pel.es.hokudai.ac.jp/~akita/ 秋田大 (Dai AKITA) CV 2014年4月 北海道大学生命科学院 博士後期課程 入学 2014年3月 大阪大学大学院生命機能研究科 5年一貫制博士課程 修士号取得退学 2012年3月 大阪大学工学部電子情報工学科 卒業 2008年3月 大阪市立都島工業高等学校電気電子工学科 卒業 http://pel.es.hokudai.ac.jp/members-jp.html 過去のメンバー 秋田大 (H28年度博士過程修了)



522:現代数学の系譜11 ガロア理論を読む
17/05/31 16:08:47.50 105ZXXC5.net
>>473
>スレ主は、佐藤幹夫の数学[増補版]を持っているのだろ。

どうも。スレ主です。レスありがとう。佐藤幹夫の数学は読んだ。増補版だったかどうか忘れたが
佐藤幹夫先生が米から帰国して、「さあ何をやろうか」というときに、小松 彦三郎先生が、佐藤超関数を東大などで講義していて、これをもう一度掘り下げようと。
そんな話を記憶している。それで、SKKが出来たと。SKKも、いま検索したら、どこかにPDFかなにかあるかも知れないね

>題名通り代数解析も含めて色々な記事が収録されていて、記事には参考文献があるだろう。

まあ、おれは、数学研究者じゃないし、自分で数学研究の論文を書けるとは思っていない(とてもそんなレベルじゃない)。
なので、この程度で良いよ
まあ、>>475に引用した秋田大 (Dai AKITA)さんのPDFの最初だけでも読んでみな。面白いよ。秋田さんも佐藤超関数を勉強して、それを使った信号処理理論も考えたらしい。が、結局、シュワルツ超関数を使った
1変数だから、佐藤超関数でも良いみたいだが、シュワルツ超関数の方が文献が多いから使い易いのかもね。秋田さん工学系だが、おれらの理解は、この程度で良いんだよ(^^

523:現代数学の系譜11 ガロア理論を読む
17/05/31 16:28:25.44 105ZXXC5.net
>>475 関連
欲しい情報は、下記の「ゲルファント学派が書いた“Generalized Functions"の第1~5巻」にからんで、これを解説した和書があったんだが
検索してもヒットしなかった。なので、スマン、諦めた(^^

たしか、共立だったと思うが、本は処分してしまったので著者名も分からない。まあ、面白い本だった
いまだったら、小林俊行先生みたく英文を読むべきだろう(^^

URLリンク(ja.wikipedia.org)
超関数
(抜粋)
Gel'


524:fand, I. M.; Graev, M. I.; Vilenkin, N. Ya. (1966), Generalized functions. Vol. 5: Integral geometry and representation theory, Translated from the Russian by Eugene Saletan, Boston, MA: Academic Press, http://www.ms.u-tokyo.ac.jp/~toshi/storage/manabihajime.pdf >>467 (抜粋) セミナーではゲルファント学派が書いた“Generalized Functions"の第5巻を読むことにしました.このシリーズは『数学のたのしみ.1 No_28の「名著発掘」で岡本清郷先生が解説しておられるように,超関数論を軸に,関数解析,微分方程式,積分幾何,表現論を論じた約2000ページの大著です. 手作りで壮大な理論を創ろうという気概にあふれでおり,独自に切り拓いたばかりの分野を書いてあるだけに,証明の不完全なところや未だ仕上がっていない部分などがたくさんありましたが,それがかえって魅力的で,読者が参加できる箇所が山のようにありました. 大島先生の海外出張のため, 4年の前期はセミナーがなく,一人でゲルファントの本や論文を読んでいました.第5巻をきちんと読むためには予備知識がかなり不足していたので,この半年聞は秋からのセミナー発表のための大事な準備期間になりました. この時期に同じシリーズの第1巻から第4巻も読みました.秋の第1回目のセミナーでは,ゲルファント流の積分幾何について,それまでに勉強したことを私なりにまとめて発表することにしました.私が話をはじめてしばらくすると,大島先生は「ちょっと待って」とおっしゃって部屋を出られ,研究室からノートを持ってこられました. そして,私の話をノートに取りながらきいてくださったのです.このとき私はとても感激し, 「よおし,頑張ろう」という気持ちになりました.こうして, 4年生のセミナーがはじまりました (引用終り)



525:現代数学の系譜11 ガロア理論を読む
17/05/31 17:32:51.97 105ZXXC5.net
>>302 戻る
独り言
>>201 「可算無限等確率測度が存在しないことの証明
 Nを自然数全体の集合とします。
 n∈Nに対してP({n})が一定となるような確率測度Pが存在するとして矛盾を示します
 P({n})=pとおきます
 p>0のときは測度の可算加法性よりP(N)=∞
 p=0のときも測度の可算加法性よりP(N)=0
 いずれにしてもP(N)=1を満たさないので矛盾。(終わり)」

まあ、これは、伝統的なコルモゴロフ流確率論の枠内。だが、いま時枝問題は、コルモゴロフ流確率論の枠を外して議論しないと行けないんじゃなかったか?

例えば、下記、デルタ関数を用いた測度の拡張が可能だ。上記の証明は、まさに、「デルタ関数の積分がルベーグ積分として理解できない」という議論と相似だろう?(^^
URLリンク(ogyahogya.hatenablog.com)
確率測度と弱収束 2014-10-14 id:ogyahogya 北見工業大学 特任助教
(抜粋)
ヘビサイド関数からディラック測度が定義されたのでいくつかのヘビサイド関数の凸結合から定義される確率測度は重み付けられたディラック測度というような感じになっています。前の記事で導入したディラックのデルタ関数はディラック測度から定義された確率密度関数とみなすことができます。

ガウス分布の確率密度関数は分散を0に限りなく近付けるとディラックのデルタ関数ぽいと前の記事で紹介しましたが、これと同様にガウス測度はディラック測度に収束することが示せます。ただし、収束は次のように弱収束の意味です。

URLリンク(www.wikiwand.com)


526:%E3%83%A9%E3%83%83%E3%82%AF%E3%81%AE%E3%83%87%E3%83%AB%E3%82%BF%E9%96%A2%E6%95%B0 ディラックのデルタ関数 Wikiwand (抜粋) デルタ関数 δ(x) は、その名前にも現れているように、あたかも通常の関数であるかのように扱われることも珍しくないが、実際には通常の意味の関数と見なすことはできない。 デルタ関数の特徴付けに用いられている積分が、通常の関数の(広義)リーマン積分やルベーグ積分として理解されるならば、このような関数の積分は恒等的に 0 に等しい関数を積分するのと同じであり積分値は 0 になる。したがって、このような条件を満たすような通常の関数は存在しない。



527:現代数学の系譜11 ガロア理論を読む
17/05/31 17:36:59.20 105ZXXC5.net
>>478 つづき
以前のスレでも書いたが、ある国の宝くじで、母数をNとし、当たりくじの番号をPiとする。当たりくじは簡単に1枚とする。当たる確率pは、p=1/Nだ。
だが、当たりくじ1枚は必ず存在する。だから、Σ1/N=1
ここで、極限N→∞を考えると、p→0 で Σ1/N=1は変わらず

これは、伝統的なコルモゴロフ流確率論の枠内には収まらない。上記証明の通りですね
だが、北見工業大学 特任助教が書いているような、デルタ関数を使った確率論を考えたら、正当化できるんじゃないかな? もっとも収束の意味が、上記弱収束の意味になるかも
まあ、証明しろと言われても困るがね(^^
証明ないし反証は、あんたたちに任せるよ(^^

ああ、スマン、独り言なので、気にしないで、議論は進めておくれ(^^
(ついつい、えらく長い超関数の前振り脱線スマン。”落ち”はこれだ。”落ち”の解説がいるとは白けるだろうが、重ねて謝っておく(^^)

528:132人目の素数さん
17/05/31 18:51:41.30 EdQWmrno.net
>>479
なんでスレ主は、北見工業大学 特任助教が伝統的なコルモゴロフ流確率論の枠内でディラック測度のことを書いているのに
「デルタ関数を使った確率論を考えたら、正当化できるんじゃないかな?」とか言ってるんだろう?

独り言です

529:132人目の素数さん
17/05/31 19:30:39.67 fJPHPMPA.net
>>478
>「箱入り無数目」問題は、コルモゴロフ流確率論の枠を外して
>議論しないと行けないんじゃなかったか?

ん?ガロ氏は>>388
「現在の測度論では予測できないっ!」と力んでなかった?

予測できないんだったら>>300で云う通り
「空いてない1列の決定番号が、他の99列より大きい確率は1」
だよね。1より小さかったら0より大きな確率で予測できるから
で、そのことが測度論で証明できるんだよね?

なんか言ってることが支離滅裂な気がするんだけど大丈夫かな?

530:現代数学の系譜11 ガロア理論を読む
17/05/31 19:34:41.23 105ZXXC5.net
>>466 関連

共立叢書「超函数・FBI変換・無限階擬微分作用素」(青木貴史-片岡清臣-山崎晋著)の訂正項目PDF(2013. 5.22; (9)) URLリンク(www.ms.u-tokyo.ac.jp)
この共立叢書は書店で見たけどむずだったな~(^^

片岡清臣先生(東大)最終講義だったのか・・(^^

URLリンク(www.ms.u-tokyo.ac.jp)
片岡清臣 MICROLOCAL ANALYSIS (Updated March 29, 2017)
URLリンク(www.ms.u-tokyo.ac.jp)
超局所解析と代数解析を巡って 片岡清臣 最終講義資料 2017年3月21日 東大
(抜粋)
・佐藤超関数基礎理論の初等化
・超関数の境界値理論の簡明化,超局所化
・佐藤超関数解に対する超局所エネルギー法
・導来圏,層の超局所台理論による初期値・境界値混合問題の超局所解析
・非線形問題への代数解析的立場からの1つの挑戦
基本的アイデアを中心に解説する.

531:現代数学の系譜11 ガロア理論を読む
17/05/31 20


532::08:14.13 ID:105ZXXC5.net



533:現代数学の系譜11 ガロア理論を読む
17/05/31 20:16:16.96 105ZXXC5.net
>>463-464
ID:fJPHPMPAさん、おっちゃん、どうも。スレ主です。

おれ、大学では、大体講義はできるだけ前に行くようにしていたね
前の方が集中できて、時間効率がいいからね
たまに、最前列で寝てたけど(^^

余談だが、おっちゃん、>>461 「理系の学科卒ではあるけど、・・高校以降、数学は殆ど独学。」って、それであんなに数学知識にムラがあるのか~(^^

534:現代数学の系譜11 ガロア理論を読む
17/05/31 20:46:47.83 105ZXXC5.net
>>483 b-関数情報追加

URLリンク(www.math.chuo-u.ac.jp)
ENCOUNTERwithMATHEMATICS

URLリンク(www.math.chuo-u.ac.jp)
第64回 複素解析と特異点 -留数が解き明かす特異点の魅力- 2016年2月20日(土),2月21日(日)

非孤立特異点の計算複素解析と代数解析アルゴリズム
- 偏微分作用素環および PBW 代数におけるグレブナ基底とホロノミー D-加群 -
田島 慎一
柏原正樹が, b-関数の理論を展開する際に導入した D-加群は, 特異点研究において重要な役割を果たす. こ
れら D[s] 加群, およびホロノミー D-加群を求める計算法とその特異点論への応用等に関する最近の結果につ
いて紹介する.

535:132人目の素数さん
17/05/31 20:54:39.48 fJPHPMPA.net
>>484
数学板にいたいなら>>300に答えてね

536:現代数学の系譜11 ガロア理論を読む
17/05/31 21:07:01.66 105ZXXC5.net
>>480
どうも。スレ主です。
独り言ありがとう

ディラック測度ねーと、慌てて検索すると・・、下記か!
ああ、なるほどね。だが、これはコルモゴロフ流確率論の中とも解釈できるが、シュワルツ超函数を使う発想はコルモゴロフ時代にはなかったから、コルモゴロフ流確率論の拡張とも解釈できるんじゃないかな~(^^;

ともかく、>>479の宝くじで、極限N→∞を考えると、p→0 で Σ1/N=1は変わらずで、これは確率論として数学的に正当化できるという結論でOKかな?(^^
ああ、独り言なので、気にしないで、どんどん議論は進めて下さいね(^^

URLリンク(ja.wikipedia.org)


537:6%B8%AC%E5%BA%A6 ディラック測度 (抜粋) ディラック測度は確率測度であり、確率の言葉で言えば標本空間 X においてほとんど確実に x が起こるかどうかを表すものである。この測度を x における単原子元(英語版)と呼ぶこともある。 ただし、ディラックデルタを(デルタ列の極限として)点列で定義する場合には、ディラック測度を原子測度(atomic measure)として扱うことは正しくない。ディラック測度は X 上の確率測度全体の成すの凸集合の極値点(英語版)である。 その名称は、測度が特別な種類のシュヴァルツ超函数として得られるという事実に基づいての、(例えば実数直線上で定義される)シュワルツ超函数として考えたディラックのデルタ関数からの逆成である。



538:現代数学の系譜11 ガロア理論を読む
17/06/01 10:03:54.42 p8p+qXsU.net
>>486>>481
めんどくさい方たちだね(^^
まず>>8をどうぞ。私は「時枝記事が成り立たないこと前提とするの部分が 共有できない人とは議論しません あしからず」だ

そもそも、時枝の数学セミナーの記事の原文読んでるのか? 特に、>>486さん、新しい人だろ? どう?
そっから念押し確認したいね。記事の原文読んでない人と議論しても、空回りだろうと思うから?
ここで、私に議論を要求するなら、数学セミナーの記事の原文を読んでほしいね。できれば、原文のコピーかPDFでも手元においてほしいね
(もっとも、原則は上記「時枝記事が成り立たないこと前提とするの部分が 共有できない人とは議論しません あしからず」だが)

それから、いままで、議論が続いていましたね。例えば、>>372
あれ、終わったんですか? 私は、ID:PqWMwFYKさんの主張通りだと思う。違う? ID:PqWMwFYKさ~ん、納得してますか?

『時枝氏の出した確率99/100は大きな論理の飛躍です
なぜなら可測関数に対してのみ主張できる結果を、証明なしに非可測関数に適用しているからです』>>120
のギャップは解消されたんですか?

見るところ、一向にギャップは解消されていないと思うがどうですか?
私は、見てみたいな~、ギャップを解消した証明を。スレ28で(^^

例えば、>>478に引用したδ関数を使ったディラック測度とかなんでも結構だが、「非可測関数による証明」を、どうぞ!
それが、時枝記事の本来の論旨だったでしょ?(^^

つづく

539:現代数学の系譜11 ガロア理論を読む
17/06/01 10:05:14.95 p8p+qXsU.net
>>488 つづき
つぎ、私の主張は、前スレ46でも引用したが、下記
スレリンク(math板:348番)
(部分編集あり)
348 返信:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2017/05/11(木) 07:03:11.91 ID:Xdy/KOT2
(抜粋)
>>18より
(引用開始)
で、話を簡単にするために、箱に入れる数を{0, 1}に限定しましょう。いわゆるブール値です
杉田先生のように、コンピュータを用いたモンテカルロ法でも良いし、実際に硬貨を使っても良い
箱に順番に、数{0, 1}(0か1のどちらか)をランダムに入れる。可算無限の数列ができる

100列に並び変える。ここは、空箱を100列に並び変えて、列名をR1~R100として、各列先頭の箱に入れて、それが終われば各列2番目に・・・と繰り返せば、数学的には同じこと
各列R1~R100が、ランダムであることは自明

で、時枝記事は、ある箱を確率99/100で当てる方法があるという。これは、ランダム数列のある箱(どの箱であれ)の確率1/2に反する
時枝は、この方法は、”非可測集合を経由したから、良いのだ~”という
(引用終り)

どん�


540:ネ拡張された確率論であれ、ランダム現象や乱数列が定義され、それを扱うことができる 一方、時枝解法は、乱数列であっても、確率99/100で当てる方法があるという。が、その解法は、乱数列の存在に反する(反例が存在する) だから、私スレ主の立場は、可算無限長のランダム現象や乱数列が定義される確率論であれば、時枝解法に反例が存在するのだと それは、可測非可測を問わずだ。極めてシンプルな話だ で、時枝解法成立を認める新確率論が出来るなら、ランダム現象や乱数列が定義から見直さなければならないだろうと思う そんな新確率論が、果たして可能なのか? 非可測まで拡張したらできる?? そう思うなら、スレ28へどうぞ。High level people 同士で存分に論じてください(^^; 一方で、”時枝解法に反例が存在する”ということを認めて、なぜ不成立なのか? なぜ成立するように見えるのか? その認識を共有できるなら、このスレで話し合う価値ありだと それが、私スレ主の立場です・・(^^ つづく




次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch