17/05/07 19:30:34.12 LvkNTLYs.net
>>105 関連
ロビンソンの超準解析(下記)も、射影幾何と似たような・・
無限小や無限大を導入することで、すっきり見通しがよくなる(^^
URLリンク(ja.wikipedia.org)
(抜粋)
概要[編集]
超準解析ではイプシロン-デルタ論法によって一度は数学から追放されたと思われた、無限小や無限大という極限に関する古典的で直観的な感覚、すなわち、いわゆる実数論にもとづかないライプニッツ流の古典的な微積分を数学的に厳密に定式化し、取り戻すことができる。
このような古典的な微積分におけるオリジナルな無限小解析学とは区別されることもある。アブラハム・ロビンソンによって考案された。超準解析の基本的な手法である超積はアラン・コンヌらによって作用素環の研究に応用されてもいる。
歴史[編集]
17世紀にニュートンやライプニッツが微分積分学を創始したとき、彼らは極限や収束の概念を極めて素朴に考えていた。後になって、ワイエルシュトラスの ε-δ 論法の発明により微分積分学は厳密化され、無限小や無限大という概念によらずに議論できるようになった。これにより、収束性に関する直観的なイメージをそのまま議論に用いる方法は廃れた。
ニュートンやライプニッツ以来300年間厳密に定義されなかった無限小量は ε-δ 論法の登場によって一旦は追放された。
しかし1950年代に登場したモデル理論を初めて応用することで、1960年代にアブラハム・ロビンソンは超実数を考案して、古典的な無限小・無限大の概念を数学的に厳密な形で正当化し、無限小解析をそのままの形で蘇らせることに成功した。このロビンソンの理論が超準解析と呼ばれるものである。