奇数の完全数の有無についてat MATH
奇数の完全数の有無について - 暇つぶし2ch316:132人目の素数さん
18/03/13 01:39:55.90 fO1irFi+.net
>>305
失礼しました。論理積ですね。
p≠4q+1の場合、命題「pがどの値でも妥当」かつ「p=4q+1」は偽です。
p≠4q+1の場合、命題「p=4q+1」も偽です。
ですから、どちらの命題からもp=4q+1が帰結できます。
命題「pがどの値でも妥当」かつ「p=4q+1」と
命題「p=4q+1」は同値なので、
「pがどの値でも妥当」を示しても示さなくても帰結は変わりません。
変わらないので、「pがどの値でも妥当」の命題を追加しても矛盾を示すことができません。
だから意味がない、と言っています。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch