奇数の完全数の有無についてat MATH
奇数の完全数の有無について - 暇つぶし2ch139:132人目の素数さん
18/02/23 00:30:28.68 CLzWvXVf.net
>>136
ただの計算間違いです。
>>115 訂正
-ap+hp+c-h≡0 (mod g)
p(-a+h)+c-h≡0 (mod g)
c-h≡0 (mod p)

整数iを用いて
p(-a+h)+c-h=gi
gp^2-gp+gi=0
i=p-p^2

i≡0 (mod p)
i≡0 (mod p-1)
iは1-pを約数に持つから偶数となる。

整数jを用いて
pj=gi
pj=g(p-p^2)
j=(1-p)g=g-gp
j≡0 (mod g)
j≡0 (mod p-1)
jは1-pを約数に持つから偶数となる。
g≡j (mod p)

c-h≡0 (mod p)だから、整数をkとして
c=kp+h
c,pはともに奇数であるから、hとkの偶奇は逆になる。 …(2)

ap-2bp+2b=c
ap=2b(p-1)+c
=(gp+h)(p-1)+kp+h
=gp(p-1)+hp+kp
a=g(p-1)+h+k
a=gp-g+h+k
∴a≡-g+h+k≡0 (mod p)
g≡h+k (mod p)
a=gp-g+h+k=g(p-1)+h+k
c≡a≡h+k (mod p-1)

gp^2+(-a-g+h)p+c-h=0 …④


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch