17/01/04 22:26:14.62 12aafGy3.net
>>28
>>15は、あなたのいうものに沿っていると思うのですが…
> しかしプレイヤー2にとっての"勝つ確率"は
> 用意された実数列の関数になっている。
「プレイヤー2にとっての"勝つ確率"」は、実数列s∈R^Nに対してν(E_s)を対応させる関数。
> であるならばプレイヤー2が確率を計算するには
> 用意される実数列の分布を仮定する必要があるし、
> それを仮定しても問題を大きくは変えないでしょう。
>>15 プレーヤ1が実数列を選ぶ確率空間を、任意の確率分布をμとして、(R^N, μ)
> 次に"勝つ"とは何か。これは決定番号の大小関係で定義できます。
> であるならば"勝ち負けの確率"は決定番号の大小関係を事象とする確率のことである。
>>15 プレーヤー2が勝つ事象Eはs∈R^N, k∈Kで決まるのでΩの部分集合である。
Eがその事象で、きちんと書くなら、
d(s,k)を実数列sを100に分けたk番目の実数列の決定番号として、
E={(s,k)| d(s,k)<max[i≠k]{d(s,i)}}
> >>27のような単純な問題に対し確率論が普通の意味での確率を
> 与えないことこそがこの問題の本質と捉えていました。
>>27はHart氏のいう単純戦略、あるいは>>15のGAME-Aでの混合戦略の確率μ(E_k)に対応するものですね。
GAME1での混合戦略では出題後の勝つ確率はν(E_s)。
確率的選択の順序を(無意識のうちに)入れ替えてしまう(GAME1とGAME-Aなどを混同してしまう)誤りが
「当てれるのに、当てれないと思ってしまう」ことの原因である、というのが私の主張です。
> (そこを一歩進んでinner/outer measureの議論に入らないかぎり、
> まったく進歩がないわけですが)
非可測集合の内測度・外測度を考えたり、非加法的測度を与えたりするのは、
確かに普通の(可測集合しか扱わない)確率論ではないかもしれません。
でもそれはちょっとした発展であって、別の確率論というものではないでしょう。