17/01/02 21:44:12.86 VW7bBLUp.net
>>13
プレーヤ1が実数列を選ぶ確率空間を、任意の確率分布をμとして、(R^N, μ)
プレーヤ2が開けない列を選ぶ確率空間を、離散一様分布をνとして、(K={1,2,...100}, ν)
として、ゲーム全体の確率空間Ωを、それらの直積とする。
プレーヤー2が勝つ事象Eはs∈R^N, k∈Kで決まるのでΩの部分集合である。
プレーヤー1が実数列sを選んだ段階で、
プレーヤー2の確率空間は Ω_s = {s}×K ≡ K.
そこでのプレーヤー2が勝つ事象E_sは E_s = {(s,k)| k∈K, (s,k)∈E} ≡ {k| k∈K, (s,k)∈E} となる。
したがって、プレーヤー2が勝つ確率は次の式になる:
p1 = ∫[R^N]{∫[E_s