16/12/31 10:15:29.18 VK/jj9Lp.net
URLリンク(en.wikipedia.org)
In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups.
A Galois group G associated to a field extension L/K acts in a natural way on some abelian groups, for example those constructed directly from L, but also through other Galois representations that may be derived by more abstract means.
Galois cohomology accounts for the way in which taking Galois-invariant elements fails to be an exact functor.
google訳(多少手直し)
数学では、ガロアコホモロジは、ガロアモジュールの群コホモロジー、すなわちガロア群のモジュールに同型代数を適用する研究です。
フィールド拡張L / Kに関連するガロア・群Gは、例えばLから直接構築されたもののようないくつかのアーベル・群上で自然なやり方で作用するが、より抽象的な手段によって導かれる他のガロア表現を介して作用する。
ガロアコホモロジーは、ガロア不変要素を取ることが正確な函手ではない方法を説明します。