17/01/07 21:43:54.50 3+lYjsf1.net
>>356 関連
>熱力学では変数として、温度、エントロピ-、体積、圧力、濃度、化学ポテンシャル等が取られるが、複素関数論では、複素平面状のx,yの2変数が取られていると解釈できる。
”熱力学関係式の簡単な誘導法 ~熱力学の四角形を用いて~”がなかなか良いわ。ここまで詳しい本は少ない。もっとも数学科では使わないし、偏微分の記号が数学系とちょっと違う
むかし、熱力学を習ったとき、とまどった。その下2つは付録
URLリンク(www.ach.nitech.ac.jp)
熱力学関係式の簡単な誘導法 ~熱力学の四角形を用いて~
(化学と教育、47(3)、p196~p199を修正したもの)
名古屋工業大学 しくみ領域
多賀圭次郎
URLリンク(www.ach.nitech.ac.jp)
やさしく図式化した大学の熱力学
1.熱平衡とエントロピー変化
名古屋工業大学 応用化学科
多賀圭次郎
URLリンク(www.ach.nitech.ac.jp)
やさしく図式化した大学の熱力学
2.力学的平衡とエントロピー変化
名古屋工業大学 応用化学科
多賀圭次郎
URLリンク(www.ach.nitech.ac.jp)
名古屋工業大学大学院 界面化学講座 多賀研究室