16/12/31 06:59:40.91 VK/jj9Lp.net
>>34-37 にお答えしよう
>>37に引用頂いている通りだが
時枝>>4-5に従って
無限を扱うには,(2)有限の極限として間接に扱う,を実行してみよう
1.時枝>>2により
s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^N
これを、一度有限に落とす。数列の長さL=nを考えよう
2.s = (s1,s2,s3 ,・・・,sn),s'=(s'1, s'2, s'3,・・・,s'n )∈R^nとなる
「ある番号から先のしっぽが一致する∃n0:n >= n0 → sn= s'n とき同値s ~ s'と定義しよう(いわばコーシーのべったり版)」は、そのままでいい
3.「任意の実数列S に対し,同値な(同じファイパーの)代表r= r(s)」を、r =(=r(s))= (r1,r2,r3 ,・・・,r n-1, r n)と表現しよう
同値の定義より、sn=r n だ。そして
「sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す」も、そのままでいい。とすると、決定番号d = d(s)=nとなることに注意をうながしておく
4.で、s = (s1,s2,s3 ,・・・,sn-1,r n) と書くことができる
今、 sn-1 ≠ r n-1と仮定しよう
5.そうすると、明らかにd = d(s) = nだ
6.r = (r1,r2,r3 ,・・・,r n)= (r1,r2,r3 ,・・・,r n-1, r n)として、>>38の引用に当てはめてみよう
Δr= s - r =(s1,s2,s3 ,・・・,sn-1,r n) - (r1,r2,r3 ,・・・,r n-1, r n)= (s1-r1,s2-r2,s3-r3 ,・・・,sn-1-r n-1 ,0 ) となり、なんの不都合もない
Δr= (s1-r1,s2-r2,s3-r3 ,・・・,sn-1-r n-1 )として、数列の長さLを、n-1と考えることも可能
7.ここで、極限を考える。n→∞だ。d = d(s) = nだった
lim (n→∞)d で、d→∞。そして、極限を考えても、同値s ~ r は不変だ