17/01/01 22:07:45.40 cqs+IUeE.net
つづき
ヒルベルトの試みの哲学的及び基本的方面ははっきりしている。
しかし、数学的方面は基礎の大部分の議論の中心ではない。独立した研究のうちでも、彼は新しいオブジェクトを導入して来た―特に、非アルキメデス幾何学。
公理群の中の関係を離すことによって、一つ又はそれより多くの仮定の失敗がどのようにして新しい結果を生むか人は発見する―この活気性のモデルが非ユークリッド幾何学だ。彼の代数と数論での経験も、公理的手法が、新しい議論を作り、新しい事象を発見し、おまけに過去を整然とした形で保持出来る手段を高めるという見解を立証した。
ブルバキにとって重要なもう一つのゲッティンゲンの成果も同じ考え方だ。B.L. ファン・デル・ヴェルデン(1903?1996)による現代代数学が1930年に出現し、ある結果へのアプローチでの類似性を示す公理に基づいた代数学の系統だった解説を与えた。同型写像の概念は代数学の中で重要な役割を果たし、後にブルバキの中心思想として浮上する。
実のところヒルベルトとファン・デル・ヴェルデンは、過去(理論の完璧な記述を取り戻すこと、が正式な表明となっているけれども)が目的ではなく、前向き(多くの新しい結果を構築出来るスリムな足場を読者に与えること)な数学的目標を求めたと理解することが重要である。
この意見が現代数学のなされた来た方法の一部となった度合いを、私達がこの種のプレゼンテーションに対して持つ自然な感触によって測ることが出来る。いつもそうだとは限らなかった。
つづく