微分積分at MATH
微分積分 - 暇つぶし2ch402:132人目の素数さん
17/11/27 20:36:31.14 xEoMPOim.net
floor(sqrt(x)) = floor(sqrt(floor(x)))
がすべての負でない実数に対して成り立つことを示せ。
解答:
floor(x) ≦ x だから
sqrt(floor(x)) ≦ sqrt(x).
floor(sqrt(floor(x))) ≦ floor(sqrt(x)).
今、仮に、 floor(sqrt(floor(x))) < floor(sqrt(x))
が成り立つような負でない実数が存在すると仮定する。
x が整数ならば floor(sqrt(floor(x))) = floor(sqrt(x)) だから、 x は整数ではない。
x は整数ではないからもちろん sqrt(x) も整数ではない。
よって、 floor(sqrt(x)) < sqrt(x)
sqrt(floor(x)) < floor(sqrt(x)) が成り立つ。なぜなら、 floor(sqrt(x)) ≦ sqrt(floor(x))
と仮定すると、 floor(sqrt(x)) ≦ floor(sqrt(floor(x))) となってしいまい仮定に反するからである。
以上より、 sqrt(floor(x)) < floor(sqrt(s)) < sqrt(x).
x < floor(x) + 1 だから sqrt(x) < sqrt(floor(x) + 1).
∴ sqrt(floor(x)) < floor(sqrt(x)) < sqrt(floor(x) + 1)
sqrt(floor(x)) < sqrt((floor(sqrt(x)))^2) < sqrt(floor(x) + 1)
floor(x) と floor(x) + 1 の間に整数 (floor(sqrt(x)))^2 が存在することはあり得ない。
これは矛盾である。
したがって、
floor(sqrt(x)) = floor(sqrt(floor(x)))
がすべての負でない実数に対して成り立つ。 👀
Rock54: Caution(BBR-MD5:0be15ced7fbdb9fdb4d0ce1929c1b82f)



次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch