16/12/24 23:13:29.66 fZUC3rLQ.net
つづき
ある人々はガウスにそのような事を言わしめたのは「数論の極端な非応用性」であると言うだろう。しかしながら、ハーディはこれは理由になっていないと指摘している。「もしも数論が応用されている例を見出そうとするならば、その為に数論を『数学の女王』としての座から押しのける事は誰もしないであろう。
ガウスの意図したものは、数論を構成する基礎的概念は数学の他のどの分野と比較してもより深く、より優雅である」とハーディは言っている。
批評
ハーディの意見は第一次世界大戦から第二次世界大戦にかけてのケンブリッジ大学とオックスフォード大学の学究的な文化に多大に影響されているといえる。
ハーディの挙げた例の幾つかは振り返ってみると不運のように思われる。例えば「数の理論や相対性理論によって支えられるような戦争への応用例を発見していない。そして今後もそのような例を見つけるような人間はいないのである。」と彼は書いている。
しかしその後、相対性理論の応用例は核兵器の開発の一部となり、数論は公開鍵暗号の応用例として有名になった[2] 。
数学の概念の応用性そのものは、「応用数学は純粋数学に劣る」というハーディの考えの根拠にはなっていないといえる。ハーディにそのような事を言わせたのは応用数学の単純さである。
(引用終り)