16/12/23 11:17:10.56 5O/87XDw.net
つづき
このように、Boltzmann-Gibbs極限q→1における通常の熱力学的関係式のすべてが、q≠1の場合に自然に移行されるのである。熱力学的Legendre変換構造は、非加法的拡張に対して、実はかくもロバストなのであった。
以上、Tsallisエントロピ-の定義(24)と合わせて式(43)以降の議論が、現時点でもっとも信頼できる理論的枠組みと考えられているものである。Tsallisの非加法的統計力学は、エントロピ-と期待値の定義の拡張に関する二つの仮定からなる理論なのである。
10-1) Levy型ランダム・ウォ-ク
中心極限定理によれば、仮に1回のジャンプが厳密にGauss分布でなくても、2次モ-メントが存在する限り、大きなNで漸近的に分布(83)が実現される。
ところで、数学的には2次モ-メントが存在しない(発散する)分布を考えることができる。そのような分布は、確率変数の大きな値に対してGauss型のように指数関数的に急減少する分布とは異なり、ベキ則的にゆっくりと減少する。
歴史的に最初にベキ則的分布が発見されたのは約1世紀ほど前のことで、それはParetoによる富裕階級の年収に関する統計解析においてであった。数学者Levyは、そのような長く尾を引く分布についての一般的理論を展開した。
今日Levy分布と呼ばれるこの確率分布と、それに関連するランダム・ウォ-ク(Levyフライト)と解釈されるものは、Paretoの統計の他にも、自然現象や社会現象の中に豊富に存在することが知られている。
それらは例えば、ミセル型ポリマ-媒質中の分子の運動、回転同心円環内の層流のカオス的輸送、準反跳レ-ザ-冷却、周期的パルス光照射を受けるセシウム原子の運動量分布則、量子色力学によるハ-ド・プロセスに対する多重度分布、健康人の心臓の鼓動のリズム、
水道の蛇口からもれ落ちる水滴の間隔、経済指数の分布、DNAの塩基配列、アホウドリの餌の漁り方、というように実に多様である。
時間を離散化して考えると、先述のGauss過程というのは単位時間ステップで近接点ヘジャンプする場合になっているが、Levy過程はもっと速くヘジャンプする確率を含んでいる。
つづく