16/12/23 08:07:17.24 5O/87XDw.net
>>498-499
ID:Ue9wXM6Xさんと、ID:06iuOQ6rとか
同一人物のようでもあり、違うようでもある・・(^^;
ところで
<プロ>
・大学教員
・修士から上の学位あり
<セミプロ>
・数学科卒
<アマ>
・上記以外
と分類して
<アマ>認定で良いかな?
551:現代数学の系譜11 ガロア理論を読む
16/12/23 08:18:38.40 5O/87XDw.net
>>498
>決定番号が+∞である場合を考えることはもちろん可能であるがこの場合に何が起こるかというと
>極限をとると発散するので極限をとって無限数列を作ることはできない
”さくそく-てきり【削足適履】”か?(下記)
「極限をとると発散するので極限をとって無限数列を作ることはできない」??
意味わからん
そもそも、”無限数列を作る”が前提だろ? 極限をとると、何が発散するのか?
URLリンク(dictionary.goo.ne.jp)
削足適履の意味 - 四字熟語一覧 - goo辞書:
さくそく-てきり【削足適履】の意味 新明解四字熟語辞典
本末を取り違えて、無理に物事を行うたとえ。折り合いをつけて、無理に合わせるたとえ。また、目先のことにとらわれて、根本を考えないたとえ。大きな足を削り落として、靴に合わせる意から。▽「適」は合わせること。「履」は靴・はきものの意。「足あしを削けずりて履くつに適てきせしむ」と訓読する。
削足適履の出典
『淮南子えなんじ』説林訓ぜいりんくん
552:現代数学の系譜11 ガロア理論を読む
16/12/23 08:33:11.58 5O/87XDw.net
>>499
>証明すれば、構成して見せること同様に解になる。
>数学だから証明が重要で、「無理な気がする」では
>あまり意味がない。
だから? ここは2ちゃんねる。お気楽な場だよ。学会じゃない
時枝記事を正当化する構成はできないと思っている
が、お分かりのように、構成するなら1つでおわりだが、不可能の証明はずっと難しい
で、例えばあなたが、「構成した」と称するものがあれば、その穴を見つけてあげましょうという挑戦状と思って貰って結構だ
なお、「時枝記事を正当化する構成はできない」の証明を考えることは、時間の無駄で意義が薄いと思っているし
まあ、その証明は難しいだろう。世の中のありとあらゆる可能な構成を考慮に入れないといけないからね
ただ、「時枝記事を正当化する構成はできない」の説明は、過去なんどか書いたし
それは、>>487辺りにだれかまとめてくれている(正確かどうかは別として)
>あの戦略を正当化できるような新規な確率論を
>構築することができるかにある。そのことは
>時枝自身が>>4にネタバラシしているので、
>そこを外した議論の意義は薄い。
それ個人的見解にすぎない
>数学者たちが無視しているのは、>>4の意味での
>時枝問題が雲をつかむような話で、
>特に肯定的なアイディアも無いが
>否定するのは悪魔の証明でしかない
>エンガチョな問いかけだからだよ。
それ個人的見解にすぎない
553:132人目の素数さん
16/12/23 08:40:22.68 dNmvLwua.net
アホ相手に解説したって無駄
会話がズレまくってて見てられんわ笑
554:132人目の素数さん
16/12/23 08:56:25.80 YMoiYfRu.net
>>499
証明が大事なら全く証明になってない時枝の議論はゴミじゃん
555:現代数学の系譜11 ガロア理論を読む
16/12/23 09:01:10.11 5O/87XDw.net
>>496 関連
Alain Connes先生
URLリンク(arxiv.org)
Why the Standard Model
Ali H. Chamseddine, Alain Connes
(Submitted on 25 Jun 2007)
The Standard Model is based on the gauge invariance principle with gauge group U(1)xSU(2)xSU(3) and suitable representations for fermions and bosons, which are begging for a conceptual understanding.
We propose a purely gravitational explanation: space-time has a fine structure given as a product of a four dimensional continuum by a finite noncommutative geometry F.
The raison d'etre for F is to correct the K-theoretic dimension from four to ten (modulo eight).
We classify the irreducible finite noncommutative geometries of K-theoretic dimension six and show that the dimension (per generation) is a square of an integer k.
Under an additional hypothesis of quaternion linearity, the geometry which reproduces the Standard Model is singled out (and one gets k=4)with the correct quantum numbers for all fields.
The spectral action applied to the product MxF delivers the full Standard Model,with neutrino mixing, coupled to gravity, and makes predictions(the number of generations is still an input).
556:132人目の素数さん
16/12/23 09:06:08.16 dNmvLwua.net
>>499
>>502と>>504を見れば分かるだろ。
数学以前に会話になってないw
時間の無駄です
557:現代数学の系譜11 ガロア理論を読む
16/12/23 09:10:41.48 5O/87XDw.net
>>504
どうも。スレ主です。
賛成だな
時枝記事が意味を持つためには
1.証明は得ていなくても、(超すその重い分布で)「100列で確率99/100」を強く示唆する数学的根拠を示した記事であること
(もちろん、確率分布が、すその軽い分布で、大数の法則や中心極限理が成立する場合(典型的には正規分布など)では、「100列で確率99/100」は言える。そして、我々日常では大数の法則が圧倒的に多いから、多くの人は無意識に「100列で確率99/100」が成立するとすり込まれているんだが)
2.新規な確率論のアイデアか方向性を示すこと
この2つが無ければ、ゴミじゃん
558:現代数学の系譜11 ガロア理論を読む
16/12/23 09:13:01.61 5O/87XDw.net
>>507 訂正
我々日常では大数の法則が圧倒的に多いから、
↓
我々日常では大数の法則が成立する場合が圧倒的に多いから、
559:132人目の素数さん
16/12/23 09:16:17.98 dNmvLwua.net
>>507
> 1.証明は得ていなくても、(超すその重い分布で)「100列で確率99/100」を強く示唆する数学的根拠を示した記事であること
> (もちろん、確率分布が、すその軽い分布で、大数の法則や中心極限理が成立する場合(典型的には正規分布など)では、「100列で確率99/100」は言える。
> そして、我々日常では大数の法則が圧倒的に多いから、多くの人は無意識に「100列で確率99/100」が成立するとすり込まれているんだが)
釣り乙w
>>487
> ・決定番号が有限値でないことがあるから時枝の戦略は成り立たない
> ・キマイラ数列∈/R^Nが存在するから時枝の戦略は成り立たない
> ・決定番号の確率分布は裾が重いから時枝の戦略は成り立たない
> ・決定番号の確率分布では期待値や分散が求まらないから時枝の戦略は成り立たない
> ・R^Nはヒルベルト空間外だから時枝の戦略は成り立たない
> ・ヒルベルトのホテルのパラドックスを考えると時枝の戦略は成り立たない
> ・決定番号は宇宙に存在する原子数よりも大きくなるから時枝の戦略は成り立たない
> ・エントロピーはほとんど変化しないから時枝の戦略は成り立たない
> ・"確率の専門家"が疑問を呈したから時枝の戦略は成り立たない
> ・"院生クラスの誰か"が与太話とコメントしたから時枝の戦略は成り立たない
> ・なにはともあれ個人的に時枝の戦略は不成立だと思う
560:現代数学の系譜11 ガロア理論を読む
16/12/23 09:26:37.22 5O/87XDw.net
>>498
確かに会話が成り立っていない気がするが・・
”なぜヒルベルト空間なんて出てきたのか意味不明すぎる”>>155 なんて話があったが
普通われわれが関数解析などで、無限次元空間(数列)を扱うとき
前提として、ヒルベルト空間ないし、バナッハ空間を前提としていることが圧倒的に多い(下記参照)
ところが時枝記事は、>>2"「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる."だったから
”実数列の集合 R^N”は、ヒルベルトでもバナッハでもないよ
だから、時枝記事のR^Nの実数列に収束は要求されていない!
URLリンク(ja.wikipedia.org)
(抜粋)
ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。
URLリンク(ja.wikipedia.org)
(抜粋)
バナッハ空間(バナッハくうかん、英: Banach space; バナハ空間)は、完備なノルム空間、即ちノルム付けられた線型空間であって、そのノルムが定める距離構造が完備であるものを言う。
解析学に現れる多くの無限次元函数空間、例えば連続函数の空間(コンパクトハウスドルフ空間上の連続写像の空間)、 Lp-空間と呼ばれるルベーグ可積分函数の空間、ハーディ空間と呼ばれる正則函数の空間などはバナッハ空間を成す。これらはもっとも広く用いられる位相線型空間であり、これらの位相はノルムから規定されるものになっている。
561:現代数学の系譜11 ガロア理論を読む
16/12/23 09:44:48.72 5O/87XDw.net
>>505
このAlain Connes先生は、過去よくお世話になった とね日記の紹介なんだ
URLリンク(blog.goo.ne.jp)
時間とは何か、空間とは何か: S.マジッド、A.コンヌ、R.ペンローズ他 - とね日記: 2014年04月29日
(抜粋)
ロジャー・ペンローズ、アラン・コンヌらが時間と空間の招待についての論点を整理し、宇宙の姿を描く。
本書は2006年9月にケンブリッジ大学のエマニュエル・カレッジで開かれた公開討論会で、「時間とは何か?空間とは何か?」という問いを一流の数学者、物理学者、哲学者、神学者からなるユニークなパネリストに問いかけ、この催しから得られた本だ。英語版は2008年に出版された。
第4章:時空の美しい理解のために:重力と物質の統一
アラン・コンヌ
コンヌ博士の理論は素粒子の標準模型と重力を統一するから、統一スケール(プランクスケール)においてニュートン定数の値も予想する。
そしてスペクトル作用は有効作用として用いることができる。MxFについての非可換幾何学へ応用するスペクトル作用関数からわかる理論は基本理論ではないが、統一スケールで意味を持つところで留まる実質的な理論と考えられる。
(この非可換幾何学によって素粒子の標準理論が導かれることはこの論文 URLリンク(arxiv.org) で示されている。)
562:現代数学の系譜11 ガロア理論を読む
16/12/23 09:46:16.87 5O/87XDw.net
>>509
釣りは、すでに、そこではないよ
こっち>>511
563:現代数学の系譜11 ガロア理論を読む
16/12/23 09:57:31.66 5O/87XDw.net
>>505
quaternionは例の四元数か
URLリンク(arxiv.org)
(抜粋)
Abstract.
We
classify the irreducible finite noncommutative geometries of K-theoretic dimension
six and show that the dimension (per generation) is a square of an integer k. Under
an additional hypothesis of quaternion linearity, the geometry which reproduces the
StandardModel is singled out (and one gets k = 4) with the correct quantum numbers
for all fields.
(略)
We can now combine the above discussion with the result of [7] Theorem 4.3 and get,
Theorem 4.3. Let M be a Riemannian spin 4-manifold and F the finite noncommutative
geometry of K-theoretic dimension 6 described above, but with multiplicity4 3.
Let M × F be endowed with the product metric.
(1) The unimodular subgroup of the unitary group acting by the adjoint representation
Ad(u) in H is the group of gauge transformations of SM.
(2) The unimodular inner fluctuations of the metric give the gauge bosons of SM.
(3) The full standard model (with neutrino mixing and seesaw mechanism) minimally
coupled to Einstein gravity is given in Euclidean form by the action
functional
URLリンク(ja.wikipedia.org)
(抜粋)
数学における四元数(しげんすう、英: quaternion(クォターニオン))は複素数を拡張した数体系である。
実は四元数の全体は、最初に発見された非可換多元体である[5]。四元数全体の成すこの代数は、ハミルトンに因んで H(あるいは黒板太文字で H)と書かれる。
この代数 H は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば H は実数の全体 R を真の部分環として含む有限次元可除環の二種類しかないうちの一つ(もう一つは複素数の全体 C)だからである。
564:現代数学の系譜11 ガロア理論を読む
16/12/23 09:59:57.51 5O/87XDw.net
>>513
素粒子論とEinstein gravityの融合
これが21世紀の数学やね
565:132人目の素数さん
16/12/23 10:26:04.93 tuUxp9X2.net
>>504
What the fuck? You mean the Riemann hypothesis is crap, dontcha?
566:132人目の素数さん
16/12/23 10:57:37.77 YMoiYfRu.net
>>515
リーマン予想は数学的に定式化されてます。
時枝のは数学の体裁すら整ってません
567:132人目の素数さん
16/12/23 10:58:50.14 YMoiYfRu.net
リーマン予想は数学の言葉を用いて書くことができますが
時枝のはそれすらできてません
568:現代数学の系譜11 ガロア理論を読む
16/12/23 11:09:28.24 5O/87XDw.net
>>515-517
どうも。スレ主です。
ID:YMoiYfRuさんに
569:賛成だ だから 下記2つの引用は否定される おそらくは、時枝は、すその超重い分布に思い至ってないので、無証明で「100列で確率99/100」成立! という素人論議にうっかり乗った そう思うよ >>485 ">>>1-3の不思議な戦略は既存の測度論的確率論では >正当化されない。これが正当化されるような確率論を >構築してくださいね!というのが、問題提起だった。" >>499 "時枝記事の存在価値は>>1-3の戦略が 標準的な確率論の下で正当化できるかではなく、 あの戦略を正当化できるような新規な確率論を 構築することができるかにある。そのことは 時枝自身が>>4にネタバラシしているので、 そこを外した議論の意義は薄い。"
570:現代数学の系譜11 ガロア理論を読む
16/12/23 11:14:32.60 5O/87XDw.net
戻る
>>358 関連
URLリンク(www.amazon.co.jp)
量子系のエンタングルメントと幾何学 ホログラフィー原理に基づく異分野横断の数理 単行本 ? 2016/6/8 松枝 宏明 (著)
第2章 物理的情報とその要素分解:高次元からの俯瞰的視点
P20 2.2.3 に、”Tsallisの非加法的エントロピ-”が出てきて、それが、q-解析(量子解析)と関係しているとある!
その関連資料が、下記小山先生の資料だ (この資料が何年のものか不明(おそらく2000年連載直後か)だが、小山先生早く日付入れた方がいいよ(^^ )
URLリンク(www.numse.nagoya-u.ac.jp)
名古屋大学大学院工学研究科 マテリアル理工学専攻 小山研究室(計算組織学研究グループ):
URLリンク(www.numse.nagoya-u.ac.jp)
計算理論 以下は、種々の論文や教科書を勉強した時の覚書です。
熱力学関連
URLリンク(www.numse.nagoya-u.ac.jp)
非加法的統計力学 [阿部純義 : 数理科学, No.439, (2000), 1月号から連載]の一部に 式のフォローを加えたもの by T.Koyama
(抜粋)
1.はじめに
ほぼ1世紀にわたって大きな成功をおさめてきたBoltzmann-Gibbs統計力学が、現在いくつかの物理的要請にしたがって拡張されようとしている。
このことに関連して最近注目を集めている「Tsallisの非加法的統計力学」について解説する。この研究は現在発展過程にあり、現時点において知られている理論的枠組みが最終的に正しいものか否かはわからない。
しかしおそらくこの方向に何らかの真理が存在することは疑いの無いことであるように思われる。したがって、本稿はすでに確立された分野の解説ではなく、新しい発見への道の途中にある統計力学研究の報告であると考えていただきたい。
つづく
571:現代数学の系譜11 ガロア理論を読む
16/12/23 11:15:02.71 5O/87XDw.net
つづき
5.Tsallisの非加法的エントロピ-
1988年に発表された論文[C. Tsallis: J. Stat. Phys.,52(1988),479.]において、Tsallisは、「マルチフラクタル系のように確率分布関数がベキ則的振る舞いをする場合に対応する統計力学はどのようなものであろうか」という根本的な問題を考察した。
歴史的には、この型の量は1970年にDaroczyによってすでに考察されていた。しかし、Daroczyの議論は情報数学の枠内に終始しており、最大エントロピ-原理や統計力学との関連については触れていない。Tsallisはまったく別の観点から独立にこの量を考案した。
Tsallisエントロピ-は、というパラメ-タを含んでいる。
6.Tsallisエントロピ-の一意性に関するコメント
ごく最近、(定数)+ΣΦ(Pi)の形をもつ量の内、composabilityを満たすものは、おそらくTsallisエントロピ-のみであろうという議論が展開された。
つづく
572:現代数学の系譜11 ガロア理論を読む
16/12/23 11:15:50.82 5O/87XDw.net
つづき
7.q-変形理論との関係
数理物理学に、量子群・q-変形理論という分野がある。それに関連するq-解析学は、20世紀初頭に現れた数学であるが、場の量子論や統計力学におけるある種の可解模型がもつ対称性の研究を通じて近年物理学に導入された。この節では、Tsallisエントロピ-とq-変形理論との興味深い関係について紹介する。
8.q-期待値と非加法的統計力学
式(42)の定義を用いた理論は非常に注目され、驚くほど多岐にわたる問題に応用された。指数関数的でない確率分布が問題になる系に対して、ことごとく適用された感がある。
ここで重要なのは、これらの研究をとおして、Tsallisエントロピ-の適用範囲がその定式化の動機であったマルチフラクタル構造をもつ系に限定されるものではなく、どうやら非加法性をもつ一般的な系の統計力学的性質の解明に有用のようである、ということが次第に明らかになってきたことである。
このように式(42)を拘束条件として用いた理論形式は、まずまずの成功をおさめたといえる。1998年までの非加法的統計力学に関するほとんどすべての議論は、この形式に基づくものであった。しかしながら、式(42)には明らかに不満足な点があった。
上述の困難を解決するために、Tsallis,MendesおよびPlastinoは規格化されたq-期待値 (43)
を導入した。
これまで何度か述べたように、Tsallisエントロピ-導入のもともとの動機は、マルチフラクタル系でスケ-ルされる確率分布関数を統計力学的な原理に基づいて記述することにあったのであるが、上で見たように、ベキ則的な振る舞いをする分布関数が実際に得られたわけである。
さて、この理論的枠組みから如何に無矛盾な熱力学的形式が導かれるかを見てみることにしよう。
つづく
573:現代数学の系譜11 ガロア理論を読む
16/12/23 11:17:10.56 5O/87XDw.net
つづき
このように、Boltzmann-Gibbs極限q→1における通常の熱力学的関係式のすべてが、q≠1の場合に自然に移行されるのである。熱力学的Legendre変換構造は、非加法的拡張に対して、実はかくもロバストなのであった。
以上、Tsallisエントロピ-の定義(24)と合わせて式(43)以降の議論が、現時点でもっとも信頼できる理論的枠組みと考えられているものである。Tsallisの非加法的統計力学は、エントロピ-と期待値の定義の拡張に関する二つの仮定からなる理論なのである。
10-1) Levy型ランダム・ウォ-ク
中心極限定理によれば、仮に1回のジャンプが厳密にGauss分布でなくても、2次モ-メントが存在する限り、大きなNで漸近的に分布(83)が実現される。
ところで、数学的には2次モ-メントが存在しない(発散する)分布を考えることができる。そのような分布は、確率変数の大きな値に対してGauss型のように指数関数的に急減少する分布とは異なり、ベキ則的にゆっくりと減少する。
歴史的に最初にベキ則的分布が発見されたのは約1世紀ほど前のことで、それはParetoによる富裕階級の年収に関する統計解析においてであった。数学者Levyは、そのような長く尾を引く分布についての一般的理論を展開した。
今日Levy分布と呼ばれるこの確率分布と、それに関連するランダム・ウォ-ク(Levyフライト)と解釈されるものは、Paretoの統計の他にも、自然現象や社会現象の中に豊富に存在することが知られている。
それらは例えば、ミセル型ポリマ-媒質中の分子の運動、回転同心円環内の層流のカオス的輸送、準反跳レ-ザ-冷却、周期的パルス光照射を受けるセシウム原子の運動量分布則、量子色力学によるハ-ド・プロセスに対する多重度分布、健康人の心臓の鼓動のリズム、
水道の蛇口からもれ落ちる水滴の間隔、経済指数の分布、DNAの塩基配列、アホウドリの餌の漁り方、というように実に多様である。
時間を離散化して考えると、先述のGauss過程というのは単位時間ステップで近接点ヘジャンプする場合になっているが、Levy過程はもっと速くヘジャンプする確率を含んでいる。
つづく
574:現代数学の系譜11 ガロア理論を読む
16/12/23 11:18:33.66 5O/87XDw.net
つづき
式(85)が示すように、Levy分布は“引き延ばされた指数関数”(stretched exponential function)のFourier変換である。このことから、N回の独立なジャンプをあらわす分布はN^(-1/α)Lα(x/N^(1/α))で与えられることになる。
このように独立な確率変数の和のしたがう分布が、一つの変数に対する分布の変数のスケ-ルを変えたものに等しくなる場合、それは安定分布と呼ばれる。Levy分布やGauss分布は安定分布である。
通常の中心極限定理によれば、有限な2次モ-メントが存在する場合、同一の分布にしたがうN個の互いに独立な確率変数に対応する分布は、Nが大きくなるとGauss分布に近づく。
一方、2次モ-メントが発散するような分布に関しては、Levy-Gnedenkoの一般化された中心極限定理によって、大きなNで収束する分布の収束先はLevy分布の安定クラスのうちのどれかである。
ところで、1980年代に、フラクタルの概念の物理学における意義がさかんに議論された。その関運で、フラクタル的分布であるLevy型の分布を最大エントロピ-原理から理解しようという試みがなされた。
このように非加法的統計力学の枠組みでは、Levy分布をきわめて自然な形で理解できるのである。
10-2) 非線形Fokker-Planck方程式と異常拡散
νμ=のとき以外は、通常の拡散法則(111)と異なり、幅の2乗が単純に時間に比例しない。このような拡散を異常拡散(anomalous diffusion)という。ν/μ>1(ν/μ<1) の場合、通常の拡散よりも遅く(速く)拡散するので、subdiffusion(superdiffusion)と呼ばれる。
異常拡散は、多孔性媒質やランダム媒質巾でよく見られる現象であり、10.1で述べたLevy型ランダム・ウォ-クと密接に関係している。
つづく
575:132人目の素数さん
16/12/23 11:19:05.96 Ue9wXM6X.net
>>501
> ”無限数列を作る”が前提だろ? 極限をとると、何が発散するのか?
スレ主がやっていることは同じ類に属する数列の差からm+1番号目以降の0をカットしてΔrを作って
> r'-r = (s'1-s1,s'2-s2,s'3-s3 ,・・・,s'n-sn ,・・・,s'm-sm ,0,0,0・・・)
> Δr= r'-r = (s'1-s1,s'2-s2,s'3-s3 ,・・・,s'n-sn ,・・・,s'm-sm )
極限をとりΔrのm+1番号目以降が0でない無限数列を作っているわけであるが
(同じ類に属する)同じ数列の差からm+1番号目以降の0をカットしてΔqを作り極限をとって
Δq= r-r = (0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-s(m+2), ... )
無限数列を同様に作るとΔqのm+1番号目以降が0でない無限数列を考えることになる
同じ無限数列の差の全ての項が0にならないことから極限は収束しないので発散する
576:現代数学の系譜11 ガロア理論を読む
16/12/23 11:19:53.71 5O/87XDw.net
つづき
おわりに
以上、Tsallisエントロピーに基づく非加法的統計力学の理論的枠組みとその応用について概観してきた。
この解説の冒頭で述べたように、この理論はまだ完成されたものではなく、明らかに発展の途上にある。非常に基本的でありながら理解できていないことがいくつか残っている。例えば、熱力学第ゼロ法則である。
これに関しては、ごく単純な系の場合に限って定式化されているのみであり、一般的な議論が待たれる。また、ごく最近見い出されたBoltzmann-Gibbs極限(と熱力学的極限の交換不可能性という事実も、その物理的意味はまだはっきりしていない。
いわゆるGibbsの定理というものがある。
歴史的には、・・繰り返し証明されてきた事柄なのである。したがって、もしこの主張が正しいならば、論理的問題として、Tsallisエントロピ-などを考える余地はまったくない、ということになる。
しかしながら、この“定理”が実は普遍的ではなく、「ミクロカノニカル集団理諭から導かれるカノニカル集団理論は一意的でない」ことが見い出された。
そして、Boltzmann-Gibbsのカノニカル集団理論以外の理論体系として、Tsallisの非加法的統計力学が確かに導かれることが証明されたのである。
このことは、平衡統一計力学がBoltzmann-Gibbs理論に限定されるものではなく、実はもっと豊かな体系であり
577:うることを示している。したがって、非平衡理論も多様でありうる。 一方、これまでの非平衡統計力学の研究は、主としてBoltzmann-Gibbs下衡理論からのずれのみを取り扱ってきた。しかし、そのようなアプローチでうまく理解できない問題が多々存存することがわかってきた。 Boltzmann-Gibbs理論の非加法的拡張は、統計力学の地平を大きくひろげる可能性を秘めている。 (引用終り)
578:現代数学の系譜11 ガロア理論を読む
16/12/23 11:25:38.99 5O/87XDw.net
>>524
どうも。スレ主です。
一つ聞くが、あんた”おっちゃん”か?
なら、証明を読む気なないよ
「Δq= r-r = (0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-s(m+2), ... )」って・・・
なにそれ?
誤植か? 訂正する気はあるのか?
579:現代数学の系譜11 ガロア理論を読む
16/12/23 11:28:38.38 5O/87XDw.net
>>526 訂正
なら、証明を読む気なないよ
↓
なら、証明を読む気はないよ
追伸
こんな読みにくい板で、なにも好き好んで証明ごっこする必要もあるまい
読まされる方はたまらんぜ
580:132人目の素数さん
16/12/23 11:35:39.08 Ue9wXM6X.net
>>526
おっちゃんじゃないよ
> なにそれ?
何が分からないのかがこちらには理解できない
スレ主が使った記号しか使っていないよ
581:現代数学の系譜11 ガロア理論を読む
16/12/23 11:43:04.33 5O/87XDw.net
>>519
>P20 2.2.3 に、”Tsallisの非加法的エントロピ-”が出てきて、それが、q-解析(量子解析)と関係しているとある!
関連
URLリンク(www.kitasato-u.ac.jp)
研究のページ(随時更新中)
(抜粋)
Soliton 方程式とその変形・拡張
私と共同研究者はこのような観点から、非整数階微積分作用素をもちいた Soliton 方程式系(具体的には KP 階層という非線形方程式集団)の拡張問題を提案しているんだ。
非整数階微積分とは、歴史的に分数微積分(fractinal calculus)と呼ばれるもので、その名のとおり半端な「階数」の微積分で、実は非常に古い研究の歴史を持っている。
ちょっと前に「ファインマンさん最後の授業 (by Leonard Mlodinow)」を読んでたら、Feynman もそれを自力で発見したと書いてあった。 それから工学系の流体力学などでは、それと意識せずに日常的にこの演算を使っているようだ。
さて、では分数微分が普通の微分と一番違う点はなんだろう。それは、一般に分数微積分演算というのは、「被微分関数」に対する積分変換である、という点だ。 つまり、普通の微分は解析関数のある1点だけの情報で決まるのに対して、分数微分は本質的に関数の非局所的な性質を反映している、ということだ。
場の理論、重力、その周辺
実はこの題材が一番古かったりする。 よく知られているように、量子場の理論と重力場の折り合いは非常に悪いんだけど、現実に重力が存在する以上は、ちゃんとした理論とその記述法があるはず。
趣味的な観点からは、種々の Blackhole 時空、特異点を持つ時空の構造に興味がある。 特に Blackhole Entropy の導出とその起源は、熱・統計力学と一般相対論の接点でもあり、激しく興味をそそられる。 一般に、関係なさそうな分野同士の接点には、財宝が埋まっているような気がするんだけど。 このあたりにも新たなアイデア・ナ参入を模索中。
という感じです。 以下は業績リストです。
(April 2004 改訂)
URLリンク(ja.wikipedia.org)
q-類似(きゅうるいじ、英: q-analog, q-analogue)とは、理論に q → 1 の極限で、元の理論に一致するように径数 q を導入するような拡張のことをいう。q-拡張(英: q-extension)などとも呼ばれる。
582:現代数学の系譜11 ガロア理論を読む
16/12/23 11:45:29.28 5O/87XDw.net
>>527
Δq= r-r = o =(0,0,0,・・・・) 以外が導けるのか?
意味わからん
583:現代数学の系譜11 ガロア理論を読む
16/12/23 11:46:46.24 5O/87XDw.net
>>530 訂正
>>528
Δq= r-r = o =(0,0,0,・・・・) 以外が導けるのか?
意味わからん
584:現代数学の系譜11 ガロア理論を読む
16/12/23 11:50:16.94 5O/87XDw.net
>>529 関連
URLリンク(www.kitasato-u.ac.jp)
中村 厚のページ
自己紹介
所属: 北里大学 理学部物理学科 非線形物理学講座
Phone & Fax: 042-778-9956
研究室所在地 : 〒252-0373 神奈川県相模原市北里 1-15-1
研究分野: 素粒子論、数理物理学、特に可積分系
585:現代数学の系譜11 ガロア理論を読む
16/12/23 12:00:19.28 5O/87XDw.net
>>519
>P20 2.2.3 に、”Tsallisの非加法的エントロピ-”が出てきて、それが、q-解析(量子解析)と関係しているとある!
昔、神保 道夫先生の量子群 q変形(q-analog)の記事を読んだときに、「量子群」は単なる命名で、本当に量子力学と関連してくるとは見ていなかったけど・・
こんなに物理の最先端と関係してくるとは予想外だ
URLリンク(ja.wikipedia.org)
神保 道夫(じんぼう みちお、1951年11月28日 - )は日本の数学者。立教大学理学部教授。
経歴
佐藤幹夫の弟子で、佐藤の代数解析学を数理物理学に応用。特に可解格子模型、可積分系で多くの業績がある。言語学者の神保格の孫にあたる。
可解格子模型の研究、ヤン・バクスター方程式の代数解析的研究から、ドリンフェルドとは独立に量子群 (カッツ・ムーディ リー代数の普遍包絡環のq変形(q-analog)したもの) を構成した。
三輪哲二と多くの共同研究を発表しており、三輪-神保の τ -関数の構成、XXZ模型に関する貢献、パンルヴェ方程式の可解格子模型の相関函数への応用、楕円型量子群の構成、共形場理論、qKZ方程式、KdV方程式等において業績がある。
学歴
1974年 - 東京大学卒業
1976年 - 京都大学大学院修士課程修了
1986年 - 京都大学論文博士
受賞・講演歴
1987年 - 日本数学会秋季賞:数理物理学に関する代数解析学的研究 (三輪哲二と共同受賞)
1990年 - ICM(京都)招待講演
1993年 - 日本学士院日本学士院研究賞:可解模型と量子群の研究
2000年 - 朝日新聞社朝日賞:可積分系の代数解析的研究 (三輪哲二と共同受賞)
2013年 - ハイネマン賞数理物理学部門:量子群・代数解析学・変形理論を用いた、可積分系と統計物理学・場の理論における相関関数の発展に対する深い研究 (三輪哲二と共同受賞)
586:132人目の素数さん
16/12/23 12:12:46.30 Ue9wXM6X.net
>>531
> Δq= r-r = o =(0,0,0,・・・・) 以外が導けるのか?
だったら数列が同じ類に属するということを条件にして
> r'-r = (s'1-s1,s'2-s2,s'3-s3 ,・・・,s'n-sn ,・・・,s'm-sm ,0,0,0・・・)
> Δr= r'-r = (s'1-s1,s'2-s2,s'3-s3 ,・・・,s'n-sn ,・・・,s'm-sm )
からΔrの極限をとって無限数列を作ってもm番目までの項は極限には一切関わらないので
結局m+1番目以降は必ず全て0になるということになるでしょう
587:現代数学の系譜11 ガロア理論を読む
16/12/23 12:47:57.99 5O/87XDw.net
>>533 関連
”Quest for symmetries in quantum integrable models has led to the discovery of quantum groups.
On one hand this opened up rapid mathematical developments in representation theory, combinatorics and other fields.
On the other hand it has advanced understanding of correlation functions of lattice models, leading to multiple integral formulas in integrable spin chains. ”か
詳しいLecture資料がないのが残念だね
URLリンク(meetings.aps.org)
Bulletin of the American Physical Society
APS March Meeting 2013
Volume 58, Number 1
Monday?Friday, March 18?22, 2013; Baltimore, Maryland
Session F1: Invited
588:Session: Physics from the Laboratory to the Universe: Davisson-Germer/Heineman/Onsager/Lilienfeld Prizes 8:00 AM?11:00 AM, Tuesday, March 19, 2013 Room: Ballroom I Sponsoring Units: DCMP GSNP Chair: Barbara Jones, International Business Machines Abstract ID: BAPS.2013.MAR.F1.4 Abstract: F1.00004 : Dannie Heineman Prize for Mathematical Physics Prize Lecture: Correlation Functions in Integrable Models II: The Role of Quantum Affine Symmetry 9:48 AM?10:24 AM Author: Michio Jimbo (Rikkyo University) Since the beginning of 1980s, hidden infinite dimensional symmetries have emerged as the origin of integrability: first in soliton theory and then in conformal field theory. Quest for symmetries in quantum integrable models has led to the discovery of quantum groups. On one hand this opened up rapid mathematical developments in representation theory, combinatorics and other fields. On the other hand it has advanced understanding of correlation functions of lattice models, leading to multiple integral formulas in integrable spin chains. We shall review these developments which continue up to the present time.
589:現代数学の系譜11 ガロア理論を読む
16/12/23 12:51:02.99 5O/87XDw.net
>>534
>>526より
"「Δq= r-r = (0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-s(m+2), ... )」って・・・
なにそれ?
誤植か? 訂正する気はあるのか?"
まず、これに答えよ。 Y or N
590:132人目の素数さん
16/12/23 13:02:00.21 tuUxp9X2.net
>>518
What you said is different from what ID:YMoiYfRu did. Why do you agree with him nevertheless? I don't get what do you think.
591:132人目の素数さん
16/12/23 13:06:09.99 Ue9wXM6X.net
>>536
N
>>524にそのまま
> (同じ類に属する)同じ数列の差からm+1番号目以降の0をカットしてΔqを作り極限をとって無限数列を同様に作ると
と書いてあるが何が分からないの?
592:現代数学の系譜11 ガロア理論を読む
16/12/23 13:14:40.40 5O/87XDw.net
>>535
柏原 正樹先生(文字化けご容赦)
URLリンク(www.jstage.jst.go.jp)
URLリンク(www.jstage.jst.go.jp)
量子群の結晶化 柏原 正樹 京都大学数理解析研究所 数学 Vol. 44 (1992) No. 4 P 330-342
0. 序
量子群UqはDrinfeld及び神保([D],[J])にょって1985年に導入された.これは,
parameter qを含む非可換(ホップ)代数で, q=1においては,半単純リー環の包抱環Uqと
なる.彼らは,統計物理学における可解模型を系統的に構成する目的で,この概念を導入したが,
そこではパラメーターqは温度のパラメーターとしてあらわれ,q=0は絶対零度にあたる.従っ
てq=0においてはUqの現象は簡単化されると期待される.実際,これから述べるように
q=0においては,Uqの表現論は非常に単純化されcombinatricsと化してしまう。
そこで以下,q=0における研究を(物質は絶対零度において結晶となるというナイーブな信念の
もとに)結晶化と呼ぼう.
結晶化により何が単純化されるかを簡単に説明しよう.(詳しくは本文参照)。
§8.結び
著者が結晶基底を導入したのと同時期にG.Lustzigがcanonica1基底の考えを発表した.結晶
基底が,絶対零度9=0における考察から端を発したのに対し,彼は,Ringe1によるquiverと
U4(③)との関係の発見に注目し, quiverに付随した代数的多様体上のconstructible sheavesの
K-群がVq(③)になり, pureかっirreducible sheafが基底をなすことを見出した.全く別の
出発点から同様の結果がえられたことは興味深い.大域結晶基底とLustzigのcanonica1基底�
593:ヘ, (symmetric Cartan行列をもつ③ に対して)一致することが彼により証明されている. ⑤ がAffine Lie環の時は,可解模型と関連して, B(λ)がpathで表示できること,1点函数 ,が⑤ のhighest weightをもつ既約表現の指標であらわされることが知られている.これについ ては文献[7]を参照されたい.
594:現代数学の系譜11 ガロア理論を読む
16/12/23 13:18:54.00 5O/87XDw.net
>>538
わからん
r-r =ゼロ(数列の場合も含めて)
以外になりうる?
r-r = (0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-s(m+2), ... )
s'(m+1)-s(m+1)≠0
s'(m+2)-s(m+2)≠0
だろ? 「r-r」だよ?
誤植か? 訂正する気はあるのか?
595:現代数学の系譜11 ガロア理論を読む
16/12/23 13:36:45.42 5O/87XDw.net
>>539 関係ないが
URLリンク(www.jstage.jst.go.jp)
Comput. Chem. Jpn., Vol. 14, No. 2, p. A11?A11 (2015) @2015 Society of Computer Chemistry, Japan
巻頭言 数理化学雑感 大学院工学系研究科 化学システム工学専攻 山下 晃一
(抜粋)
近頃, 数学と材料科学が蜜月状態であるというようなことを良く耳にする. 数学者の思考実験に材料科学
が何らかの手がかりを与えるようだ. トポロジカルに基づいて全く理論的に, 非自明相の存在が予言され,
それが実験的に検証されている. 米国物理学会でトポロジカル絶縁体・ 超伝導体に関連したセッションの多
さに驚いたのも記憶に新しい. より化学に近い材料科学では離散幾何学が活躍する. 炭素はダイヤモンド,
グラフェン, カーボンナノチューブ, フラーレンと様々な構造をとるが, 数学的には炭素原子と炭素―炭素
結合のネットワークからなる離散曲面の曲率で分類できる. カーボンナノチューブとフラーレンは非負曲率
炭素構造に対応する. 負曲率炭素構造も予言されているが, これまでそのような構造は発見もされていない
し,合成にも成功していないようだが.
こんなことを考えていたら, 若き日の数学への憧憬がよみがえってきた. シュレディンガー方程式には
愛(i)があるということで, 複素関数には結構お世話になった. 虚時間発展の経路積分法, 複素回転座標に
よる共鳴状態計算, 複素ポテンシャルによる波束の吸収, 複素古典軌道によるトンネル経路の探索,
非平衡グリーン関数法による電子輸送など. もう20年 くらい以前であるが, 量子カオスが盛んに研究されていた当
時, 多次元空間での複素古典軌道について物理の若手研究者と話していたら, それをやるなら, まずヘルマンダー
の多変数複素関数論の教科書を読破しないと, と言っていた彼は神田の古本屋で同書の日本語訳を見つけたと喜んでいた.
数年前に英語の改訂版が出版されたので, 懐かしい思いでページをめくってみたが,
つづく
596:現代数学の系譜11 ガロア理論を読む
16/12/23 13:37:12.18 5O/87XDw.net
>>541 つづき
バリアの高さに, やはり勉強は若い時にやるものだとの反省. それでも定年退職後にはチャレンジしようと
購入. 最近, 多変数複素関数論の日本の生みの親ともいえる岡潔に関する本をよく目にする. 多変数複素関
数論は数学の分野でもブームなのだろうか.2003年 ロシアの数学者ペレルマンが,100年間未解決であった
ポアンカレ予想をインターネット上で公開した論文で解決した.
2006年のフィールズ賞を拒否し, クレイ研究所の100万 ドルの賞金にも興味を示さな
かったということで, テレビでも特集が組まれペレルマンの人となりが注目された. ポアンカレ予想は純粋
に数学的問題であるが, ペレルマンの用いた解決法, リッチフロー方程式が統計力学や宇宙論で応用されて
いる. リッチフロー方程式は, 多様体のリーマン計量とリッチテンソルで与えられる非線形発展方程式であ
るが, これでブラックホールが崩壊する過程が追えるようである. リーマン計量といえば, 学生時代, 福井
謙一先生の極限反応座標に関する研究をしていたことを思い出す.
(引用終り)
597:現代数学の系譜11 ガロア理論を読む
16/12/23 13:50:42.57 5O/87XDw.net
>>541 関係ないが
URLリンク(www.kurims.kyoto-u.ac.jp)
平成27年度(第37回)数学入門公開講座テキスト(京都大学数理解析研究所,平成27年8月3日~8月6日開催
ポアンカレ予想とリッチフロー
横田巧(京都大学数理解析研究所)
概要
この公開講座では,1904 年のH. Poincare の論文に由来するポアンカレ予想
と呼ばれる幾何学の予想と,2002~03 年に発表されたG. Perelman による
その証明を扱います.ここでは,ポアンカレ予想の歴史やその解決にまつわ
るドラマよりも,Perelman の証明の数学的な部分に踏み込み,その雰囲気
が伝わるような解説を試みます.
598:現代数学の系譜11 ガロア理論を読む
16/12/23 14:00:37.32 5O/87XDw.net
>>543 リッチ曲率関連
URLリンク(www.math.chuo-u.ac.jp)
ENCOUNTERwithMATHEMATICS
第63回 最適輸送理論とリッチ曲率 ~物を運ぶと曲率が分かる~ 2015年2月20日 (金), 21日 (土)
最適輸送理論とリッチ曲率―物を運ぶと曲率が分かる―全体のレジュメ
最適輸送理論とRicci 曲率に関する今後の課題(桒田和正)
URLリンク(www.math.chuo-u.ac.jp)
最適輸送理論とリッチ曲率―物を運ぶと曲率が分かる―全体のレジュメ 第63回 最適輸送理論とリッチ曲率 物を運ぶと曲率が分かる 2015
599:現代数学の系譜11 ガロア理論を読む
16/12/23 14:17:41.42 5O/87XDw.net
>>543-544
関係なくもないか・・・(^^
>>542にペレルマンの用いリッチフローがあるから
「リッチフロー方程式は, 多様体のリーマン計量とリッチテンソルで与えられる非線形発展方程式である」>>542のだが
>>543 横田巧先生 F-汎関数(エントロピー)、W-汎関数(エントロピー)(”補足26 N(g; u) はShannonエントロピーと呼ばれる.”)など
また
>>544 "3.1 リッチ曲率の下限の特徴づけ
まずリーマン多様体において,リッチ曲率がある定数以上であるという性質が,Wasser-
stein 空間上のある汎関数(エントロピー)の凸性で特徴づけられることを述べる.この
エントロピーの凸性を曲率次元条件と呼ぶ."
など
ペレルマンの証明を読んだときに、「なんでエントロピー」と理解できなかったが・・
>>358 関連 URLリンク(www.amazon.co.jp)
量子系のエンタングルメントと幾何学 ホログラフィー原理に基づく異分野横断の数理 単行本 ? 2016/6/8 松枝 宏明 (著)
などを読むと、量子系のエンタングルメント→量子論と重力論との双対→エントロピー vs リーマン計量とリッチテンソル
と、エントロピーからリーマン計量(リッチテンソル)へと繋がってくるのか??
まだ、いまいち理解できないが(^^;
600:現代数学の系譜11 ガロア理論を読む
16/12/23 14:20:28.98 5O/87XDw.net
>>545 訂正
>>542にペレルマンの用いリッチフローがあるから
↓
>>542にペレルマンの用いたリッチフローがあるから
601:132人目の素数さん
16/12/23 14:25:21.10 zmNmHX9F.net
>>541
おっちゃんです。
ヘルマンダーは遥か前に亡くなったんだけど、
今売られているヘルマンダーの多変数複素解析の本って改訂版なのかい?
602:現代数学の系譜11 ガロア理論を読む
16/12/23 14:28:22.29 5O/87XDw.net
>>547
おっちゃん、どうも。スレ主です。
さあ、ヘルマンダーの多変数複素解析については、おっちゃんの方が詳しいだろう
603:132人目の素数さん
16/12/23 14:46:16.32 zmNmHX9F.net
>>548
まあ、ヘルマンダーが多変数複素解析の本を出したのは、1990年が最後なんだが。
ヘルマンダーは楕円型の境界値
604:問題やシュワルツの超関数、フーリエ変換が 出来ないと間違いなく撃墜する本だ。一松本より難しいが、 解析や複素幾何のお勉強には最適であることには間違いない。 これ1冊で測度論、偏微分方程式、シュワルツの超関数、フーリエ変換、ラプラス変換は学習出来る。
605:現代数学の系譜11 ガロア理論を読む
16/12/23 15:00:23.81 5O/87XDw.net
>>545
そうそう、熱流・・・
URLリンク(rims.blog.so-net.ne.jp)
ハミルトンの発想 [大域解析学] 数学セミナー増刊 ミレニアム賞問題 2010年 07月号 [雑誌] 2010-11-07
数学セミナー増刊の「ハミルトンの発想はどのように生じたのか」において
ハミルトンが微分幾何の測地線を一般化した調和写像を研究し、熱流の方法を
用いて、リッチテンソルからリッチフローを定義する方法を解説してあるのを発見。
ハミルトンがリッチフローの発想に至った経緯がわかったのは、ありがたい。
URLリンク(commutative.world.coocan.jp)
ポアンカレ予想 (Commutative Weblog): 投稿者: あやたろう 日時: 2008年6月12日
(抜粋)
なぜ、従来のトポロジー本来の手法が、3次元のポアンカレ予想に有効でないのか、本間龍雄「ポアンカレー予想物語」日本評論社 1985年によれば、次のとおりである。
すなわち、高次元ポアンカレ予想で有効であったハンドル体の理論は、3次元ではヘゴール分解の理論となるが、ヘゴール分解の与える代数的情報は、生成元と関係式で、解決に十分な情報ではない、というものである。
数学セミナーの上記特集によれば、その他にも、3次元球面中のリンクのデーンの手術として問題を与えるのか、分岐被覆空間として与えるのか、4次元多様体の境界として与えるのか、三角形分割として与えられるのか、3次元球面からの適当なホモトピー同値写像として与えるのか、などいろいろな出発点があるが、
どのトポロジー的な手法から出発しても、いいところまではいくのだが、必ず行き詰るのだそうである。
つづく
606:現代数学の系譜11 ガロア理論を読む
16/12/23 15:01:16.53 5O/87XDw.net
つづき
べレルマンの手法は、次のように概説される。単連結3次元閉多様体上に、リーマン計量を与える。そこで、リッチ・フローを走らせれば、本質的に大域的な障害が起こらず、球面の標準計量に収束するのだという。ただ、初期計量では、何度もリッチ・フローが止まるので、そこに現れる特異点を手術し、リッチ・フローを続けさせる工夫が必要であって、そこにべレルマンの苦心がある。
なお、リッチ・フローという手法は、べレルマンのオリジナルではなく、アメリカの数学者、リチャード・ハミルトンによって、熱流の問題を幾何学に応用することによって、発見されたものである。
リッチとは、レヴィ・チビタとならんで、初期のリーマン幾何学の創設者の一人であり、ハミルトンが利用したのは、リッチ・テンソルと呼ばれる縮約された曲率テンソルである。
さらに述べると、べレルマンが利用したのは、リッチ・フローの局所非崩壊性である。この局所非崩壊性によって、単調性が保証され、以ってリッチ・フローを続けさせるため、特異時刻での手術を行うことが可能となる。
URLリンク(ja.wikipedia.org)
(抜粋)
グレゴリオ・リッチ=クルバストロ(英語版)(Gregorio
607: Ricci-Curbastro)の名前に因むリッチフローは、最初にリチャード・ハミルトン(Richard Hamilton)により1981年に導入され、リッチ・ハミルトンフロー(Ricci?Hamilton flow)とも呼ばれる。 リッチフローは、最初にグリゴリー・ペレルマン(Grigori Perelman)によりポアンカレ予想の証明のために使われ、同様に、サイモン・ブレンデルとリチャード・シェーンによる微分可能球面定理(英語版)(differentiable sphere theorem)の証明に使われた。 https://en.wikipedia.org/wiki/Sphere_theorem Differentiable sphere theorem (引用終り)
608:現代数学の系譜11 ガロア理論を読む
16/12/23 15:03:51.83 5O/87XDw.net
>>550
リッチフローが熱流即ち熱拡散の偏微分方程式と類似だと
そこらか、エントロピーという発想にペレルマンはなったのかね?
いまや、エンタングルメントエントロピー VS 重力 なんだよね
609:132人目の素数さん
16/12/23 15:07:00.86 zmNmHX9F.net
>>548
解析集合なら、ヘルマンダーより一松本の方が詳しい。
ヘルマンダーは、複素(解析)幾何の進展の様子が分かる。
シュワルツ自身が書いた超函数の理論とかと一緒に読むといいかも知れない。
これはシュワルツの超関数の原典だ。
610:現代数学の系譜11 ガロア理論を読む
16/12/23 15:11:19.86 5O/87XDw.net
>>549
どうも。スレ主です。
昔、山口 昌哉先生の本にお世話になった
拡散の偏微分方程式の境界値問題で、解析解を求めるのに、いろいろ本を漁って、山口 昌哉先生の本にぴったりの問題と解答が載っていてね
それを使わせて貰った
いまなら有限要素法か差分で数値解析をするところだろが
解析解は、それが求まれば、見通しがよくなる
数値解析は、何通りも解を求めないと、傾向がつかめない
まあ、なにをしたいのかだな
自分がしたいことをしっかり把握することだ
611:現代数学の系譜11 ガロア理論を読む
16/12/23 15:14:37.43 5O/87XDw.net
>>553
おっちゃん、どうも。スレ主です。
おっちゃん、関数解析に詳しいね
612:132人目の素数さん
16/12/23 15:28:21.56 zmNmHX9F.net
>>555
ちなみに、ヘルマンダーはハミルトン・フローを扱っていたことがある。
ハミルトン・フローはヘルマンダーの手法の射程内にあった。
613:132人目の素数さん
16/12/23 15:41:28.05 Ue9wXM6X.net
>>540
>「r-r」だよ?
Yes
>>424でスレ主は
> Δrは、個別には有限の数列の長さだが、確率を考えるときは、集合としては、数列の有限の数列の長さに
> 上限はなく、無限大の極限を考える必要がある
と書いているがそれの変形バージョンだと考えてくれればよいし
> r-r =ゼロ(数列の場合も含めて)
> 以外になりうる?
という質問は決定番号は有限値以外(つまり無限大)になりうる?という質問の変形バージョンと思えばよい
Δrの最初の有限個(m個)の数字をどのような数に変えても属する類は変わらず極限をとって
無限数列を作ってもm+1番目以降の数字に影響は与えないから
(Δr)'=(0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-s(m+2), ... )と書け
また(r'-r)と(r-r)つまり(Δr)'と(r-r)は同じ類に属することから
(r-r)=(0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-s(m+2), ... )と書ける
ある無限数列anがあってそれを出題することは{n番目の箱に入れる数字} - anを全て0にすること
であるがこの場合も(r-r)=(0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-s(m+2), ... )と書ける
614:現代数学の系譜11 ガロア理論を読む
16/12/23 18:09:30.10 5O/87XDw.net
>>557
頑固に間違いを認めようとしないんだ(^^
墓穴を掘るの図か?
悪いが、あまりへんなやつを相手するほど暇じゃないんだが
で、一つ質問させてもらっていいかい?
>(r-r)=(0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-s(m+2), ... )と書ける
(r-r)=(0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-s(m+2), ... )の
s'(m+1)とs'(m+2)の二つは、なんで「s’」なのかね? どこから出るのかね?
(最初は、>>524だったよね? そこは良いのか?)
615:132人目の素数さん
16/12/23 19:07:28.23 tuUxp9X2.net
>>558
"you'll never take an acknowledgement for the wrongness stubbornly." That represents just what are you.
616:132人目の素数さん
16/12/23 19:14:51.98 YtlmsmUp.net
URLリンク(youtu.be)
URLリンク(youtu.be)
617:OcNZ0s https://youtu.be/xHx5MbIGEoY
618:現代数学の系譜11 ガロア理論を読む
16/12/23 19:44:14.09 5O/87XDw.net
>>556 ハミルトン・フロー過去ログより下記。リッチフローとは別だな
同14 スレリンク(math板:228番)
228 現代数学の系譜11 ガロア理論を読む 2015/07/18
(抜粋)
URLリンク(ja.wikipedia.org)
数学におけるシンプレクティック多様体(symplectic manifold)は、シンプレクティック形式と呼ばれる非退化な閉形式である 2-形式を持つ滑らかな多様体である。
シンプレクティック多様体上の微分可能な実数値関数 H はエネルギー函数(英語版)(energy function)を与えることができ、これをハミルトニアンと呼ぶ。
どのようなハミルトニアンに対してもハミルトンベクトル場が対応付けられる。ハミルトンベクトル場の積分曲線(英語版)はハミルトン方程式の解曲線になる。
ハミルトンベクトル場は、シンプレクティック多様体上のフロー(ハミルトンフロー、あるいは、シンプレクティック同相写像と呼ばれる)を定め、リウヴィルの定理によれば、ハミルトンフローは相空間上の体積要素を保存する。
122 現代数学の系譜11 ガロア理論を読む 2015/07/11
(抜粋)
URLリンク(ja.wikipedia.org)
歴史
テンソルという言葉は、1846年にウィリアム・ローワン・ハミルトンによって特定の種類の代数系(やがてクリフォード代数として知られるようになる)におけるノルム操作を記述するために導入された。
現在の意味で使われるようになったのは1899年のヴォルデマール・フォークトからである。
テンソルの記法は1890年ごろにグレゴリオ・リッチ=カルバストロによって絶対微分という名の下に発展させられ、トゥーリオ・レヴィ=チヴィタによる1900年の古典的な同名の著作によって多くの数学者たちに知られるようになった。
20世紀に入ってからはこの分野はテンソル解析として知られるようになり、1915年頃のアルベルト・アインシュタインによる一般相対性理論の導入によって広く知られるようになった。
一般相対性理論は完全にテンソルの言葉を用いて定式化される。アインシュタインは苦労の末にマルセル・グロスマンから[1] (あるいはレヴィ=チビタ自身から) テンソルの理論を学んだとされている。
619:132人目の素数さん
16/12/23 19:55:55.40 O2bqe8k5.net
ガロアコホモロジーって知ってる?
620:現代数学の系譜11 ガロア理論を読む
16/12/23 20:01:38.55 5O/87XDw.net
なまえだけ知っている
コホモロジーは勉強中だがむずいね
621:132人目の素数さん
16/12/23 20:47:07.38 Ue9wXM6X.net
>>558
> Δr= r'-r = (s'1-s1,s'2-s2,s'3-s3 ,・・・,s'n-sn ,・・・,s'm-sm )
の極限をとって無限数列をつくるときに決定番号を無限大にする極限のとりかたを採用すれば
Δr = (s'1-s1, s'2-s2, s'3-s3, ... , s'm-sm, s'(m+1)-s(m+1), s'(m+2)-(m+2), ... )となり
決定番号が決して無限大にならない極限のとりかたを採用すれば
Δr = (s'1-s1, s'2-s2, s'3-s3, ... , s'm-sm, 0, 0, 0, ... )となる
極限をとるまえに0をm個ならべてまずΔq= r-r = (0, 0, 0, ... , 0)を作る
ΔrとΔqの極限の無限数列は同じ類に属するから上の2種類の極限をそのまま使って
決定番号を無限大にする極限のとりかたを採用すれば
Δq= r-r = (0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-(m+2), ... )となりs'が出現する
決定番号が決して無限大にならない極限のとりかたを採用すれば
Δq= r-r = (0, 0, 0, ... , 0, 0, 0, 0, ... )となる
スレ主によると
> 有限の数列の長さに上限はなく、無限大の極限を考える必要がある
なので決定番号を無限大にする極限のとりかたを採用すれば
Δq= r-r = (0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-(m+2), ... )となる
ある無限数列anがあってそれを出題することは{n番目の箱に入れる数字} - anを全て0にすること
であるが極限をとるまえに0をm個ならべたΔq= r-r = (0, 0, 0, ... , 0)を作ることは常に可能であり
極限に関しては上に書いたことそのままで決定番号を無限大にする極限のとりかたを採用すれば
Δq= r-r = (0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-(m+2), ... )となりs'が出現する
決定番号が決して無限大にならない極限のとりかたを採用すれば
Δq= r-r = (0, 0, 0, ... , 0, 0, 0, 0, ... )となる
しかし任意の無限数列を出題することが可能と仮定すれば決定番号が決して無限大にならない極限のとりかた
のみを採用してs'(m+1), s'(m+2)などが出現しないようにしなければならない
622:現代数学の系譜11 ガロア理論を読む
16/12/23 21:43:06.11 5O/87XDw.net
>>564
どうも。スレ主です。
シンプルに二つ質問をさせてもらっていいか?
1.繰り返しになるが、最初(”Δq= r-r”について)は、>>524だったよね? そこは良いのか?>>558
2.rの定義だが、リンクを辿ると、>>334に行き着く。>>334では、
定義:代表r= r(s)= (s1,s2,s3 ,・・・,sn ,・・・) だが、それで良いかい?
(因みに、ここで、同じ類の元
623:を一つ取る r'= r(s')= (s'1,s'2,s'3 ,・・・,s'm ,・・・) しっぽの”・・・)”の部分は、同値類なので同じ(後述の差を取ると、なくなる部分)だが)
624:現代数学の系譜11 ガロア理論を読む
16/12/23 21:53:21.82 5O/87XDw.net
>>565
まあ、答えを待つまでも無いから、勝手に進めさせて貰うよ
1.定義:代表r= r(s)= (s1,s2,s3 ,・・・,sn ,・・・) だ
因みに、ここで、同じ類の元を一つ取る r'= r(s')= (s'1,s'2,s'3 ,・・・,s'm ,・・・) しっぽの”・・・)”の部分は、同値類なので同じ(後述の差を取ると、なくなる部分)だ
2.Δq= r-r =(s1-s1,s2-s2,s3-s3 ,・・・,sn-sn ,・・・) 以外の数学をおれは知らない
これ以外の数学をやりたいなら、別のスレ立てなよ
3.Δq= r-r = (0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-(m+2), ... )となりs'が出現する?
わからん! 分かりたいとは、決して思わん!! そんなもの、普通の数学ではないだろ??? そういう数学なら、確かに時枝の解法も成立するさ・・(^^
625:132人目の素数さん
16/12/23 21:55:12.06 Ue9wXM6X.net
>>565
> そこは良いのか?
そこの指す意味が分からないが基本的にスレ主は内容を読まずになにそれ?とか言い出すので
こちらも読むことを待たずに表現は変えたりしますよ
内容は同じです
> rの定義
任意の無限数列は代表元になりえますよ
スレ主流の無限数列ではなくて時枝記事にある一般的な無限数列(s1, s2, ... , sn, ... )です
626:現代数学の系譜11 ガロア理論を読む
16/12/23 22:08:56.89 5O/87XDw.net
>>564
頑固に間違いを認めようとしないんだ!(^^
墓穴を掘るの図か?
悪いが、あまりへんなやつを相手するほど暇じゃないんだ・・
頑固に間違いを認めようとしないから、Δq=r-r =ゼロ(数列の場合も含めて)以外になるだと?
Δq= r-r = (0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-(m+2), ... )となりs'が出現する?
わからん。議論にならん。相手にしないようにしよう・・
これから、既読スルーな!(^^;
URLリンク(be-agent.jp)
【悲報】男性からの既読スルーは8割の確率で脈ナシなのが判明! キレイツイキュウ【美・エージェント】~女性のためのBeauty Hack 更新日:2016.06.15
627:132人目の素数さん
16/12/23 22:14:59.78 Ue9wXM6X.net
>>566
s'が出現するのは間違っているというのがこちらの主張なのだが
Δr= r'-rのr'をrに変えればΔq= r-rになるが決定番号が有限か無限大かが問題なので極限のとりかたを変えずに
つまり極限以外の部分を変えると
Δr = (s'1-s1, s'2-s2, s'3-s3, ... , s'm-sm, s'(m+1)-s(m+1), s'(m+2)-(m+2), ... )は
Δq = (0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-(m+2), ... )の形までしか変わらないでしょう
Δr = (s'1-s1, s'2-s2, s'3-s3, ... , s'm-sm, 0, 0, 0, ... )は極限のとりかたを変えなくても
Δq = (0, 0, 0, ... , 0, 0, 0, ... )の形に変えることができる
> Δrは、個別には有限の数列の長さだが、確率を考えるときは、集合としては、数列の有限の数列の長さに
> 上限はなく、無限大の極限を考える必要がある
(無限大の極限を含めた)決定番号の確率とスレ主が書いているものには
Δq = (0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-(m+2), ... )のようなありえないものによる結果が
混ざっていることになる
628:現代数学の系譜11 ガロア理論を読む
16/12/23 22:18:05.09 5O/87XDw.net
そこは良いのか?と聞いたのは、最初(”Δq= r-r”について)>>524 から、なにか付け加えることはないのかということだが
分からんという話は、>>526 の”なにそれ?”からだから、後出しどうよ? という意味で聞いたんだがね
だが、もう議論する気はないよ>>568
頑固さと、詭弁だけはよく分かったよ(^^
629:132人目の素数さん
16/12/23 22:27:40.55 Ue9wXM6X.net
>>570
> (r-r)=(0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-s(m+2), ... )の
> s'(m+1)とs'(m+2)の二つは、なんで「s’」なのかね? どこから出るのかね?
>(最初は、>>524だったよね? そこは良いのか?)
>>524は
> Δq= r-r = (0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-s(m+2), ... )
だからs'(m+1)-s(m+1), s'(m+2)-s(m+2), ... は全く同じなのだが
630:132人目の素数さん
16/12/23 23:17:29.24 tuUxp9X2.net
>>570
"I understood you being stubborn and a quibbler."
That's what to say from we to you.
631:現代数学の系譜11 ガロア理論を読む
16/12/23 23:39:30.72 5O/87XDw.net
<独り言>
1.Δq= r-r = (0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-s(m+2), ... )≠ゼロ これが理解できる人は皆無だろう(私も含め)
2.時枝>>2 決定番号:sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す | 任意の実数列S、同値な(同じファイパーの) 代表r= r(s)
箱は可算無限個だから、dの取り得る値の範囲(値域)は、[1,∞)。つまりは、dに上限はなく、自然数全体。dは有限�
632:セが、極限としては∞になる。([1,∞)は開集合であることにご注意) 3.時枝>>2 に従って、但し表現の都合で>>334のように、代表r= r(s)= (s1,s2,s3 ,・・・,sn ,・・・)としよう 極限もなにも無関係だ。単純に、r-r =(0, 0, 0, ・・・0, 0, 0, ・・・) = ゼロ 以外になりようがない。ここは全く議論の余地なし! 4.ところで、自然数について、任意の元n∈N(=自然数の集合)で、nは有限。しかし、 card(N)=可算無限で、n→∞の極限が取れる。これ当然ですよ ここらが、理解できていない人がいるんだな。そういう人は、下記をご参照ください。”可算濃度とは有限の値を持つ数が無限に存在するときの濃度”がキーワードなんだよ http://sets.cocolog-nifty.com/blog/2011/04/7-17b8.html 無限桁の自然数は自然数か≪無限は実在するか7≫: 独今論者のカップ麺:2011年4月 3日 (日) (抜粋) 可算濃度とは有限の値を持つ数が無限に存在するときの濃度
633:132人目の素数さん
16/12/23 23:57:20.82 tuUxp9X2.net
Do you wanna say a real number is not finite?
634:132人目の素数さん
16/12/24 01:03:52.95 8MIuJVCA.net
>>573
極限をとっても数列が属する類が変わらないと仮定しているかぎりは
Δq= r-r = (0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-s(m+2), ... )≠ゼロ
とせざるを得ない
数列が属する類が変わらないと仮定していればdの極限として見掛け上は∞になっているように見えるが
実際には数列が属する類が変わり比較する代表元も変わるのでdの極限は有限の値をとることになる
数列が属する類が変わることをs(m+1), s(m+2)などをs'(m+1), s'(m+2)などに変えることで
表せば極限は
Δr = (s'1-s1, s'2-s2, s'3-s3, ... , s'm-sm, s'(m+1)-s(m+1), s'(m+2)-s(m+2), ... )
= (s'1-s1, s'2-s2, s'3-s3, ... , s'm-sm, s'(m+1)-s'(m+1), s'(m+2)-s'(m+2), ... )
= (s'1-s1, s'2-s2, s'3-s3, ... , s'm-sm, 0, 0, 0, ... )
の形になり
Δq = r-r = (0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-s(m+2), ... )
= (0, 0, 0, ... , 0, s'(m+1)-s'(m+1), s'(m+2)-s'(m+2), ... )
= (0, 0, 0, ... , 0, 0, 0, 0, ... ) = ゼロ
になるので何の問題も生じない
635:132人目の素数さん
16/12/24 04:08:42.84 y+S47uPS.net
このスレだけは荒らさない円記号のおっさんベリークルシミマス
636:現代数学の系譜11 ガロア理論を読む
16/12/24 09:07:06.67 fZUC3rLQ.net
<独り言2>
1.なんだか結局、時枝のスタート>>2の”可算無限個の箱”が分かってないみたいだね
2.無限については、下記の「無限は実在するか(実無限・可能無限)」面白いよ
URLリンク(sets.cocolog-nifty.com)
無限は実在するか(実無限・可能無限): 独今論者のカップ麺: 独今論者のカップ麺:2011年
1.実無限と可能無限
2.アキレスは亀と無限遠に到達し得るのか
3.0.999…の「…」は何を意味するか
4.0.999…と区間縮小法
5.「0.999…<1」がダメなわけ
6.無理数と有理数と対角線論法
7.無限桁の自然数は自然数か URLリンク(sets.cocolog-nifty.com) ここ>>573で使った
8.「べきべきべき…集合」とカントールパラドクス
9.可能無限は無限なのか
10.排中律がダメなわけ
11.おとぎ話としての実無限・懐疑論としての可能無限
3.あと、定義、前提(仮定)と推論の3つが、ごしゃごしゃ。>>575「極限をとっても数列が属する類が変わらないと仮定しているかぎりは」??? なんですかそれは?
その思考法&発想法が理解できない。おそらく、これを見ている他の多くの人も、びっくりする発言だろう
(ああ、一人、日本語の不自由なおっさん>>574が、同類みたいだが・・・? )
4.見るところ、甘くて大学1年か。極限が分かってない? 高1?
追伸
自然数について、任意の元n∈N(=自然数の集合)で、nは有限。しかし、 card(N)=可算無限で、n→∞の極限が取れる。これ当然ですよ
ここらが、理解できていない人がいるんだな
昔Tさんがそうだった。決定番号が有限とか・・言っていたね。「決定番号は、元としては有限、集合としては可算無限(自然数の集合=N)」が正しい認識です
だから、決定番号をd = d(s)という関数として考えるとき(時枝>>2参照)、その値域は(集合として)
637:[1,∞)だよ。([1,∞)は開集合であることにご注意)>>573
638:132人目の素数さん
16/12/24 09:40:59.90 bo1lMKUf.net
箱は可算無限個だから、dの取り得る値の範囲(値域)は、[1,∞)。つまりは、dに上限はなく、自然数全体。dは有限だが、極限としては∞になる。([1,∞)は開集合であることにご注意)
どうでもいいんだけどさ
自然数全体を[1,∞)と区間で書くやつは嫌い
んでどんな位相を考えてるのか知らんけど自然数全体が開集合ってのも嫌だ
639:現代数学の系譜11 ガロア理論を読む
16/12/24 09:45:27.72 fZUC3rLQ.net
>>577 補足
”独今論者のカップ麺”さんは、哲学系として書いているんだが
” 9.可能無限は無限なのか
10.排中律がダメなわけ
11.おとぎ話としての実無限・懐疑論としての可能無限”
辺りは、現代風解釈としては、”可能無限、排中律不可(背理法不可)、・・直観主義”みたいなのは、デジタルコンピュータの内部の世界と見ると分かり易いかなと
(圏論見ると、コンピュータの理論に関連してここらが出てくるよ)
つまり、デジタルコンピュータの内部の世界は有限で、πなんて無限小数は扱えない。時間も有限で無限ループに入るとリセットしないといけない=極限は不可
デジタルコンピュータの外に、人間の世界があって。人間の世界も本当は有限だけれど、アナログ的でもある。宇宙は無限だとか、量子力学は無限がないと不便だとか
だから人は無限を扱えるように、”選択公理”というブラックボックスを発明した。”選択公理”というサブルーチンを呼び出すと、無限を扱ってくれるんだ
構成主義者(下記)からみると、”ブラックボックスはだめ”となるかも知れないが・・
URLリンク(ja.wikipedia.org)
数学の哲学
(抜粋)
数学の哲学(すうがくのてつがく、英: philosophy of mathematics)は、哲学(科学哲学)の一分野で、数学を条件付けている哲学的前提や哲学的基礎、そして数学の哲学的意味を研究するものである。数理哲学とも言われる。
構成主義
直観主義と同様、構成主義もまた、一定のいみで明白に構成することのできる数学的なものだけが数学的言説において認められるべきであるという規制原理を主張する。この考え方によれば、数学とは人間の直観の営みであって、有意味な記号を用いたゲームなどではない。
そうではなく、数学とは、われわれが心的活動を通じて直接作り出せるものに関係している。また、構成主義の支持者たちの中には、非構成的証明(背理法など)を拒否する者もいる。
640:現代数学の系譜11 ガロア理論を読む
16/12/24 09:53:22.85 fZUC3rLQ.net
>>578
どうも。スレ主です。
まあ、違和感あるよね、確かに(書いていてそう思ったが)
だが、よくやる”記号の乱用”(下記)と思って下さい
数直線で、[1,∞)
R→Nの制限写像で、[[1,∞))⊂N とでもして、「新しい記号を定義」すれば良いかもしれないが、分かり易さを損ねる面もある
URLリンク(ja.wikipedia.org)
記号の濫用
(抜粋)
数学において、記号の濫用(きごうのらんよう、英: abuse of notation, 仏: abus de notation)とは、形式的には正しくないが表記を簡単にしたり正しい直観を示唆するような表記を(間違いのもととなったり混乱を引き起こすようなことがなさそうなときに)用いることである。記号の濫用は記号の誤用とは異なる。誤用は避けなければならない。
関連する概念に用語の濫用(英: abuse of language, abuse of terminology, 仏: abus de langage)がある。これは記号ではなく用語が(形式的には)誤って使われることを指す。
記号以外の濫用とほぼ同義である。例えば群 G の表現とは正確には G から GL(V) (ただし V はベクトル空間)への群準同型のことであるが、よく表現空間 V のことを「G の表現」という。
用語の濫用は、異なるが自然に同型な対象を同一視する際によく行われる。
例えば、定数関数とその値や、直交座標系の入った 3 次元ユークリッド空間と R3 である。
641:現代数学の系譜11 ガロア理論を読む
16/12/24 10:11:56.56 fZUC3rLQ.net
>>533 もどる 関連
>昔、神保 道夫先生の量子群 q変形(q-analog)の記事を読んだときに、「量子群」は単なる命名で、本当に量子力学と関連してくるとは見ていなかったけど・・
ご参考。”量子群”は”量子可積分系”から来ているんだね。数学理論は整備されると、実際の物理現象に適用されるようになるということか・・
URLリンク(ja.wikipedia.org)
量子群
(抜粋)
数学と理論物理学において、用語量子群(りょうしぐん、英: quantum group)は付加構造を持った様々な種類の非可換代数を指す。一般に、量子群はある種のホップ代数(英語版)である。ただ1つの包括的な定義があるわけではなく、広範に類似した対象の族がある。
用語「量子群」は最初量子可積分系の理論において現れた。ウラジーミル・ドリンフェルト ( Vladimir Drinfeld) と神保道夫によってホップ代数のある特定のクラスとして定義されたのだった。
URLリンク(ja.wikipedia.org)
可積分系
(抜粋)
量子可積分系
量子可積分系(quantum integrable systems)という考え方もある。量子論的な設定では、相空間上の函数がヒルベルト空間上の自己共役作用素に置き換わり、ポアソン可換な函数(Poisson commuting functions)が可換な作用素(commuting operators)へ置き換わる。
量子可積分系を説明するために、自由粒子の設定を考えるとよい。ここに全ての力学は一体(問題)となる。量子系は力学が二体(問題)に還元されるときに積分できると言われる。
ヤン・バクスター方程式(英語版)(Yang-Baxter equation)は、この還元性の結果であり、保存量の無限個の集まりを与えるトレースで同一視することをもたらす。
このアイデアの全ては、明白な解を得る代数的ベーテ仮設(英語版)(Bethe Ansatz)を使うことができる量子逆散乱法(英語版)(Quantum inverse scattering method)の中に組み込まれている。
量子可積分モデルの例は、リーブ・リンガーモデル(英語版)(Lieb-Liniger Model)やハバードモデル(Hubbard model)や、ハイゼンベルグモデル(英語版)(Heisenberg model)のいくつかの変形がる。[1]
642:現代数学の系譜11 ガロア理論を読む
16/12/24 10:20:21.29 fZUC3rLQ.net
>>578 もどる
>んでどんな位相を考えてるのか知らんけど自然数全体が開集合ってのも嫌だ
単純な話で、リーマン球を考えて、無限遠点を付け加えて、数直線(-∞、+∞)をループにする。直感的には閉集合。ここから、∞の1点を抜くと開集合。これを開いて、再び数直線(-∞、+∞)に戻り、半直線[1,∞)を作って、あとは自然数の集合に当てはめて、記号の乱用をしただけ
URLリンク(ja.wikipedia.org)
数学においてリーマン球面(リーマンきゅうめん、英語: Riemann sphere)は、無限遠点を一点追加して複素平面を拡張する一手法
643:現代数学の系譜11 ガロア理論を読む
16/12/24 10:26:15.13 fZUC3rLQ.net
>>582
>>んでどんな位相を考えてるのか知らんけど自然数全体が開集合ってのも嫌だ
そういえば、位相を入れると、空集合と全体集合は、開かつ閉だったかな?
URLリンク(ja.wikipedia.org)
位相空間
(抜粋)
X の開集合でも閉集合でもあるような部分集合は X の開かつ閉集合と呼ばれる(定義から明らかに Φ および X は必ず開かつ閉である)。X には、開でも閉でもないような部分集合が存在しうることに留意せよ。
644:現代数学の系譜11 ガロア理論を読む
16/12/24 10:28:41.94 fZUC3rLQ.net
>>582
まあ、リーマン球から、∞の1点を抜いたと強調するために、開集合(あるいは開区間)としたんだ
645:現代数学の系譜11 ガロア理論を読む
16/12/24 10:51:29.31 fZUC3rLQ.net
>>494 関連
URLリンク(www.cc.kyoto-su.ac.jp)
(抜粋)
Date: 2 August 2016
Speaker: Shin-ichi Sasa (Kyoto University)
Title: ネーター不変量としての熱力学エントロピー
Abstract: 「ブラックホールエントロピーはネーター電荷である」というタイトルの論文がある。[1]
この研究結果に動機づけられて、熱力学エントロピーをネーター不変量として特徴づけた [2]。 具体的には、時間に関して非一様な変換を考え、対称性が存在する条件を書き下し、それを満たすものがあるかどうかを問うた。
その結果、作用の引数をあるクラスの軌道に制限したときに、(一般化された意味で)対称となる変換があることが分かった。
特に、巨視的な系で示量的なネーター不変量を導く場合には、その変換は本質的に一意に定まり、そのときのネーター不変量はボルツマン公式によって与えられたエントロピーと一致した。
この理論のもっとも驚くべき結果は、古典力学系を解析しているにも関わらず、「作用の次元をもった普遍定数」が時間の非一様変換に現れることである。
[1] R. M. Wald, Phys. Rev. D 48 R3427 (1993).
[2] S. Sasa and Y. Yokokura, Phys. Rev. Lett. 116 140601 (2016); Editors' suggestion (arXiv:1509.08943)
Slide: PDF URLリンク(www.cc.kyoto-su.ac.jp)
PDFより
(抜粋)2015年7月7日 3輪車上@バンガロール
横倉「熱力学エントロピーを対称性から導出する、
という研究はないでしょうか?」
佐々「聞いたことない。いかにも僕が考えそうな
問題なのに、考えたこともなかった。
でも、待てよ、あり得るわ。うん、あるわ。」
背景:ブラックホールエントロピーをネーター電荷として 導出するのは重力業界では有名な話
R. M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D (1993) (一般相対論100周年 Phys Rev 記念碑論文のひとつに選出)
基本事項 (ネーターの定理) 対称性があれば、解に沿って保存量がある。
(断熱定理) 相空間の点に対してそれを含むエネルギー面で囲まれた 相空間体積は、準静的操作に対するほとんど全ての解に おいて不変である。
646:現代数学の系譜11 ガロア理論を読む
16/12/24 11:28:32.20 fZUC3rLQ.net
>>584 補足
正直、位相論はあまり詳しくないが
「決定番号をd = d(s)という関数として考えるとき(時枝>>2参照)、その値域は(集合として)[1,∞)だよ。([1,∞)は開集合であることにご注意)>>573」>>577
で、”リーマン球から、∞の1点を抜いた”>>584を理解してもらえれば、終わりで
幾何学的に考えて貰えれば良いんだが・・
そういう意味では、位相の開集合より、普通に決まる距離(と区間と区間の開及び閉)を考えた方が分かりやすいかな
647:132人目の素数さん
16/12/24 11:30:07.47 bo1lMKUf.net
>>582,583
つまり通常の位相が入ったRに1点∞を加えてコンパクト位相空間としたR∪{∞}の部分集合として自然数全体が開集合だとおっしゃるのですか?
それとも
648:自然数全体をいわゆる全体集合としてみたときにそこにどんな位相を入れても自然数全体は開集合だろうとおっしゃっているのですか?
649:132人目の素数さん
16/12/24 11:33:35.38 bo1lMKUf.net
>>586
つまりRの通常の距離から定まる位相に対してRの部分集合として自然数全体が開集合だと宣うのですね?
650:132人目の素数さん
16/12/24 12:47:28.02 PeRuEEpz.net
You are wrong absolutely. Gotta check out the define of open set.
651:132人目の素数さん
16/12/24 13:03:17.12 PeRuEEpz.net
Excuse me. I'm telling to ID:fZUC3rLQ.
652:132人目の素数さん
16/12/24 15:05:55.98 m4AeGHK+.net
なぜ荒さないんだろうね
653:132人目の素数さん
16/12/24 15:13:45.43 Zz02lVF7.net
スレ主が相手してくれるのが嬉しいからだろ
孤独は嫌なのよお互い
654:現代数学の系譜11 ガロア理論を読む
16/12/24 18:35:23.28 fZUC3rLQ.net
>>588
>つまりRの通常の距離から定まる位相に対してRの部分集合として自然数全体が開集合だと宣うのですね?
正直位相は詳しくないのだが
それで良いと思う
幾何学的に言えば、自然数全体が(半)開区間[1,∞)に埋め込めるが、端が無い
というか、有限の閉区間[1,n]には収まらないと
655:132人目の素数さん
16/12/24 18:48:32.87 LuDpQlj5.net
ようするにスレ主は開とか閉とか有界とかそのレベルの数学用語すら正しく認識できてないってことでおk?
656:132人目の素数さん
16/12/24 18:53:08.27 PeRuEEpz.net
You clandestinely replaced open set to half-opened interval, dontcha?
657:132人目の素数さん
16/12/24 18:56:40.65 PeRuEEpz.net
You are not only foolish but also crafty.
658:現代数学の系譜11 ガロア理論を読む
16/12/24 19:13:08.82 fZUC3rLQ.net
>>594
開とか閉とか有界とかそのレベルの数学概念は確かだが
用語で、位相の開とか閉の使い方はいまいちだろうね (全体集合が開かつ閉とか、”へい”?って感じですわ。定義だから、そうなんだけど。そこらは、区間の開と閉の使い方とは微妙に違うよね)
まあ、別にそれで困らんけど
院試受けるわけじゃないから・・(^^
659:132人目の素数さん
16/12/24 19:43:02.59 y0uECYyd.net
…
660:現代数学の系譜11 ガロア理論を読む
16/12/24 19:46:17.32 fZUC3rLQ.net
>>591-592
>なぜ荒さないんだろうね
私スレ主の興味と、¥さんの興味とが、結構重なる部分があるんだろうね
おれは、量子力学系や超ひも理論が面白いと思っているから、その系統のメモを記録しているのだが・・
「孤独は嫌なのよお互い」ということもないだろうと思う(少なくともおれはない。このスレはおれ一人で可だよ!)
そもそも、¥さんは、ずっと長い間このスレはいわゆる”見”(”けん”:ばくち用語で見るだけで手を出さない)だった
時枝記事で盛り上がったときに、介入してきたけど
また、もとに戻っただけだろう
¥さんでびっくりしたのは、周期の吉永正彦先生の論文を面白がって読んだことかな
あのレベルの論文は、なかなか読めないのよね、私は。細部は流して、「要するにこういうことか?」という読み方はできるが・・、まあ時間もないし(^^;
¥さんはレベル高いわ
ま、¥さんが介入してこんということは、私の言っていることに納得しているんだろう・・(^^;
661:132人目の素数さん
16/12/24 19:55:08.31 PeRuEEpz.net
A hopeless idiot
662:¥ ◆2VB8wsVUoo
16/12/24 19:55:18.35 kEm4zZD9.net
いやいや。時々は参考になるpdfとかもあるので、そういうのはちゃんと
落として保存したり読んだりしてます。だから結構楽しめてますわ。
私は基本的には物理は嫌いですが、でも『数学を行う際のネタ』として
は物理は極めて重要であり、これはパリの親方の昔からの教えですから。
¥
663:現代数学の系譜11 ガロア理論を読む
16/12/24 20:10:14.02 fZUC3rLQ.net
>>593 補足
>幾何学的に言えば、自然数全体が(半)開区間[1,∞)に埋め込めるが、端が無い
>というか、有限の閉区間[1,n]には収まらないと
時枝の>>2の決定番号も同様に、d = d(s)という関数として考えるとき、d�
664:ェ任意の自然数全体を渡るということもすぐ分かること 任意のnに対して、d >= nになるように、Δr= r'-r = (s'1-s1,s'2-s2,s'3-s3 ,・・・,s'n-sn ) ここに s'n-sn≠0 とできればいいだけだ >>334に書いてあるが、 代表r= r(s)= (s1,s2,s3 ,・・・,sn ,・・・) ここで、同じ類の元を一つ取る r'= r(s')= (s'1,s'2,s'3 ,・・・,s'n ,・・・) しっぽの”・・・)”の部分は、同値類なので同じ(差を取ると、なくなる部分) と出来れば良い それは簡単に実現できる(∵s'n-sn≠0 となるs'nを選ぶことができるからだ)
665:現代数学の系譜11 ガロア理論を読む
16/12/24 20:21:26.03 fZUC3rLQ.net
>>601
¥さん、どうも。スレ主です。
私は、物理と数学は同じくらい好きなんで、両方目配りしています
というか、いまどきの数学は、物理との境界領域が面白いという感じもあり
というか、純数学という分野が非常に狭くなったというか・・
どっかで、数学の外と繋がってしまうというのが、21世紀の数学の姿かなと思っています
例えば、昔直観主義論理の話を読んで、背理法は不可とかで、そんなもん何の役に立つのかと思ったが、いまどきコンピュータサイエンスでもてはやされるとか・・(^^
666:132人目の素数さん
16/12/24 20:51:02.76 8MIuJVCA.net
>>577
> Δr = r'-r = (s'1-s1, s'2-s2, s'3-s3, ... , s'm-sm, 0, 0, 0, ... )
これを極限について書き直すと m < nとなる全ての自然数nに対して |s'n - sn| = 0
となって時枝記事ではこれが代表元との比較による極限の定義になっている
極限をとって任意の無限数列を出題することが可能であると仮定した段階で極限の存在
つまり任意の無限数列に対して比較すべき代表元が存在してある自然数m+1をとれば
m < nとなる全てのnに対して |s'n - sn| = 0となることが仮定されていることになる
例を挙げると
r' = (3, 3, ... , 3, 3, 1, 1, ... , 1, 1, ... ) (= s'n)
r = (2, 2, ... , 2, 2, 1, 1, ... , 1, 1, ... ) (= sn)
r'-r = (1, 1, ... , 1, 2, 2, ... , 2, 0, 0, 0, ... )で決定番号がd0であるとすれば
d0より大きいnに対して |s'n - sn| = 0である
これで全ての決定番号についてカバーしているはずだがスレ主はわざわざ
> Δrは、個別には有限の数列の長さだが、確率を考えるときは、集合としては、数列の有限の数列の長さに
> 上限はなく、無限大の極限を考える必要がある
と書いている
> 「極限をとっても数列が属する類が変わらないと仮定しているかぎりは」
実際はdを無限大にした場合はr'-r = (1, 1, ... , 2, 2, ... , 2, ... )は以下のような別の無限数列になる
r' = (3, 3, ... , 3, 3, 3, 3, ... , 3, 3, ... )
r'' = (1, 1, ... , 1, 1, 3, 3, ... , 3, 3, ... ) (新しい別の代表元)
r'-r'' = (2, 2, ... , 2, 0, 0, ... , 0, ... ) (数列r'が属する類が変わっているので別の代表元r''で比較している)
(1, 1, ... , 1, 2, 2, ... , 2)の2を増やしていっても(2, 2, ... , 2, 0, 0, ... , 0, ... )にはならないので
極限をとっても数列が属する類が変わらないと仮定しなければr'-r = (1, 1, ... , 2, 2, ... , 2, ... )について
何も言えない
r'-r = (1, 1, ... , 2, 2, ... , 2, ... )を書き直せばある自然数m'より大きい全てのnに対して |s'n - sn| = 2
となって代表元との比較による極限が存在せず発散すると解釈するのが一番自然ではあると思うが
スレ主にとっては確率を考える上での数学的な意味があるのでしょう?
667:華厳のサンタ ◆2VB8wsVUoo
16/12/24 20:52:28.79 kEm4zZD9.net
本来の私は『純粋な論理だけで成立する数学』しか好きになれなくて、
だから量子力学の泥臭い計算とか実例とか、そういうのは嫌いで、学生
の時に読んだシッフの教科書に辟易して、そしてフォン・ノイマンに乗
り変えたのが、その後の方向性を暫くは決めました。だから抽象論こそ
が数学だっていう原理主義者なんですわ。でもアソコで恭司さんにも接
する機会があったので、ああいう素朴な数学は大好きになりましたね。
実際に抽象論だけでは良い数学にはなりませんよね。つまり『外部に向
かって問題意識が開放的である事』が非常に重要だと思うんです。パリ
の親方の教えは正にこういう事だと私は理解しています。
ですが結果の客観性であるとか、或いは主張の根拠に対する客観性の担
保の仕方が数学と物理学では決定的に違いますよね。まあ私は物理学者
式の根拠の付け方は「信用してない」って事です。アイデアのソースに
はなりますが。
めりぃ~、くりすますぅ~~~
¥
668:132人目の素数さん
16/12/24 23:11:56.30 vEx4ikP1.net
『ガロアを読む』にあるガロア自身による証明を何度も読んでたら気がついた。
ガロアは、有理数体上の多項式環の商環、
Q[X]/(g(X))
と同型写像と、ほとんど同じことを頭の中ではイメージしてたのではないか。倉田先生は、このことを認めないから、不自然な証明を書いて、変なことを言ってるのではないのか。
669:現代数学の系譜11 ガロア理論を読む
16/12/24 23:12:18.27 fZUC3rLQ.net
>>605
¥さん、どうも。スレ主です。
いや、面白いね
”『純粋な論理だけで成立する数学』しか好きになれなくて”か
昔ガウスが、整数論が数学の女王だとか言ったとか・・
典拠を検索したら、へんなもの(下記)がヒットしたね・・
URLリンク(ja.wikipedia.org)
(抜粋)
『ある数学者の生涯と弁明』(あるすうがくしゃのしょうがいとべんめい、原題: A Mathematician's Apology)とは1940年にイギリスの数学者、G・H・ハーディによって書かれた随筆である。
ハーディの数学に対する「美意識」と彼の個人的な内容を含んだもので、一般の人々に対して現役の数学者の心の中がどうなっているかの洞察を提供するものだった。
二つ目の理由として第二次世界大戦が開始され、平和主義を主張するハーディは「応用というよりは、数学は数学そのものの為に追求されるべきである」という主張を正当化したかったことがあった。
この本は応用数学の達成事項に頼ることなしに、純粋数学だけの長所について詳しく説明することによって、内包的な重要性に基づいて数学を正当化した本である。また数学の全体的な重要性を正当化する為に、純粋数学者の未来の世代に対して影響を与えるようなものでもあった。
この本の主要なテーマの一つは数学自身が持っている「美しさ」である。それをハーディは絵画や詩と比較している。彼にとって最も美しい数学というものは、数学以外において何も応用性を持たないものであった。
それを彼は「純粋数学」と位置づけ、それは数論という彼にとって特別な分野をさしていた。ハーディは純粋数学自体が役に立たないという点で、それが誤って使われ、害を及ぼすようなことがない、という主張をすることによって純粋数学の追求を正当化している。他方でハーディは応用数学を醜く、些細なものとして誹謗中傷している。
「数学は科学の女王であり、数論は数学の女王である。」というカール・フリードリヒ・ガウスの言葉についてのハーディがしているコメントの中でも強調されている部分である。
つづく
670:現代数学の系譜11 ガロア理論を読む
16/12/24 23:13:29.66 fZUC3rLQ.net
つづき
ある人々はガウスにそのような事を言わしめたのは「数論の極端な非応用性」であると言うだろう。しかしながら、ハーディはこれは理由になっていないと指摘している。「もしも数論が応用されている例を見出そうとするならば、その為に数論を『数学の女王』としての座から押しのける事は誰もしないであろう。
ガウスの意図したものは、数論を構成する基礎的概念は数学の他のどの分野と比較してもより深く、より優雅である」とハーディは言っている。
批評
ハーディの意見は第一次世界大戦から第二次世界大戦にかけてのケンブリッジ大学とオックスフォード大学の学究的な文化に多大に影響されているといえる。
ハーディの挙げた例の幾つかは振り返ってみると不運のように思われる。例えば「数の理論や相対性理論によって支えられるような戦争への応用例を発見していない。そして今後もそのような例を見つけるような人間はいないのである。」と彼は書いている。
しかしその後、相対性理論の応用例は核兵器の開発の一部となり、数論は公開鍵暗号の応用例として有名になった[2] 。
数学の概念の応用性そのものは、「応用数学は純粋数学に劣る」というハーディの考えの根拠にはなっていないといえる。ハーディにそのような事を言わせたのは応用数学の単純さである。
(引用終り)
671:現代数学の系譜11 ガロア理論を読む
16/12/24 23:21:44.87 fZUC3rLQ.net
>>607 つづき
ハーディ先生も純粋数学好きだったのか? ガウスは有名だね
一方で、佐藤幹夫先生のように、物理に遊びに行ったりした人もいたり。佐藤数学は、結構物理と数学の境界を狙っていた気がする
小平邦彦先生も、物理に寄り道している(下記)。寄り道が、果たして役立ったのか、無駄だったのか? 私は、それが理解できるほど、小平理論が分からないのが残念だ
URLリンク(ja.wikipedia.org)
小平 邦彦(こだいら くにひこ、1915年3月16日 - 1997年7月26日)は、日本の数学者。東京都出身。日本初のフィールズ賞受賞者。
小平は代数幾何に(楕円型微分方程式論など)複素解析的手法を持ち込み、これらの業績を次々と上げていった[1]。これはアンドレ・ヴェイユなどの目指した徹底的な代数化の方向とは趣を異にするものであり、後年のマイケル・アティヤ、サイモン・ドナルドソンらによるヤン=ミルズ理論のさきがけとも見なせる[2][3]。
略歴
1915年 - 小平権一の長男として東京都に生まれる。
1935年 - 東京帝国大学数学科に入学。
1938年 - 同学科卒業後、同大学物理学科入学。
1944年 - 東京帝国大学物理学科助教授に就任。
1948年 - プリンストン高等研究所に招聘される。
672:132人目の素数さん
16/12/24 23:34:38.24 vEx4ikP1.net
つまり『ガロアを読む』は、ガロアが時代を超越した天才であることを、できるだけ認めないという方針で書かれた本になってしまってる。
673:現代数学の系譜11 ガロア理論を読む
16/12/24 23:37:37.34 fZUC3rLQ.net
>>607 つづき
私ら、完全にハーディ先生とは対極かな
しかし、ニュートンは天体の運動を計算するために微分積分を発展させた
オイラーは、万能選手で、数論も応用数学もなんでも膨大に手がけた
フーリエ変換で有名なフーリエは、熱伝導方程式を解く過程で、フーリエ変換やフーリエ級数展開を考えたとか
個人的には、数学の力で、自然が解明され
自然が解明されると、もっと高度の数学が必要とされる
そういう相互作用が面白いと思っています
キリスト教徒ではないが、挨拶として、メリークリスマス !(^^;
URLリンク(detail.chiebukuro.yahoo.co.jp)
クリスマスはなぜメリーというの - 英語 | Yahoo!知恵袋: 2007/12/7
URLリンク(www.about-christmas.info)
クリスマスの由来は? メリークリスマス: 2016
674:現代数学の系譜11 ガロア理論を読む
16/12/24 23:49:04.38 fZUC3rLQ.net
>>606
>『ガロアを読む』にあるガロア自身による証明を何度も読んでたら
ガロア自身による証明を読むなら
Coxのガロア本の解説(歴史ノート)も読んだ方が良いとおもうよ。英文の方がいいだろうが・・
あと、Edwards (著) Galois Theory (Graduate Texts in Mathematics) (下記)も。Edwardsは、盛んに倉田先生が引用しているだろ
URLリンク(www.amazon.co.jp)
675:現代数学の系譜11 ガロア理論を読む
16/12/24 23:54:40.99 fZUC3rLQ.net
>>610
>つまり『ガロアを読む』は、ガロアが時代を超越した天才であることを、できるだけ認めないという方針で書かれた本になってしまってる。
"ガロアが時代を超越した天才であること"は、いわゆるデフォルト (コンピュータ)なんだ
「いわずもがな」というやつで、そういう本を読む人には常識だから、書かれていないよ
URLリンク(ja.wikipedia.org)(%E3%82%B3%E3%83%B3%E3%83%94%E3%83%A5%E3%83%BC%E3%82%BF)
デフォルト (コンピュータ)
コンピュータ・ソフトウェア分野でのデフォルト(英: default)とは、主に「初期設定値、工場出荷時値、標準値」などの意味で使われることが多く、特に説明がなければ「標準(の)」という意味で使われる。
デフォルト値 (英: Default value) は、「何らかの値の入力[1]が必要なプログラム処理において、値が未入力だった場合に対応するためにプログラム側であらかじめ準備された設定値」のこと。
例えばユーザからの入力値を使用して処理を行うプログラムにおいてユーザが値の入力を省略した場合、プログラムはあたかもデフォルト値が入力されたものとみなして動作する。
名称の由来は、幅広い機種やさまざまな環境で動作させるための環境設定が、システム管理者や開発者にとって(特にINIファイルの新規作成においては)面倒な作業であるため、最善な設定値ではないが概ね幅広い環境で動作するであろう暫定的かつ汎用的な設定値を準備することで、環境設定入力作業を一部又は全部省略することが可能となった。
この準備された設定値を「無作為」「怠る(おこたる)」等の意味を持つ「デフォルト」を用いて「デフォルト値」と呼ばれ、システム関係者の間では略して「デフォ値」と呼ぶ事もある。
676:132人目の素数さん
16/12/25 00:15:11.83 GO+uQt22.net
清浄な数学に物理の気配は無いのです
677:現代数学の系譜11 ガロア理論を読む
16/12/25 00:17:47.95 QkYh9roQ.net
<独り言3>
>>604って、何を言いたいのか、さっぱりわからん
時枝を擁護している人たちよ
こんなやつを野放しで良いのか?
彼の主張が分かるなら、サポートしてやれよ(^^
>>524 で 「Δq= r-r = (0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-s(m+2), ... )」って・・・ なにそれ?
(r-r =ゼロ 以外になり得ないよ ) だったのだが>>526
これ、やめたのか?
678:132人目の素数さん
16/12/25 00:50:46.25 Eq3jVVYd.net
やはり『ガロアを読む』以外の本も読んだ方がいいだろうな。ガロア自身の証明は、実際足りない部分があるが、補って読めばすばらしいものだ。それをなぜか倉田先生は不細工な証明に置き換えようとする。倉田先生の古典研究のやり方はおかしいと思う。
679:132人目の素数さん
16/12/25 02:07:28.26 ycdX0iYo.net
>>615
>>604の例をそのまま使うが
r' = (3, 3, ... , 3, 3, 1, 1, ... , 1, 1, ... ) (= s'n)
r = (2, 2, ... , 2, 2, 1, 1, ... , 1, 1, ... ) (= sn)
r'-r = (1, 1, ... , 1, 2, 2, ... , 2, 0, 0, 0, ... )
極限をとっても数列が属する類が変わらないと仮定して
比較対象の代表元 r = (2, ... , 2, 1, ... , 1, ... )を固定する
スレ主が書いているようにr'-rからシッポの0をなくすとr'-r = (1, 1, ... , 1, 2, 2, ... , 2)
このときr' = (3, 3, ... , 3)とr = (2, 2, ... , 2, 1, ... , 1)になる(r'とrの長さは等しい)
r'-r = (1, 1, ... , 1, 2, 2, ... , 2)の2を増やしていって極限を考えたとすると
r' = (3, 3, ... , 3, ... )とr = (2, 2, ... , 2, 1, ... , 1, ... )になる(rは変化させない)
比較対象の代表元を固定して決定番号(あるいはその極限)を求めることから
元のr' = (3, ... , 3, 1, ... , 1, ... )と決定番号の極限をとるためのr' = (3, 3, ... , 3, ... )は
同じ類に属することになるが同値類の定義よりシッポの部分は同じであるから
上の数列の差(0, 0, 0, ... , 0, 2, 2, ... )のシッポが0であるとみなすことになる
0でない無限数列のシッポを0であるとみなすのならば
> 「Δq= r-r = (0, 0, 0, ... , 0, s'(m+1)-s(m+1), s'(m+2)-s(m+2), ... )」
も0とみなすことになる
そのようなありえない仮定をすればある自然数m'より大きい全てのnに対して |s'n - sn| = 2
となってもr'-r = (1, 1, ... , 1, 2, 2, ... , 2)の代表元との比較による極限が存在することになる
680:132人目の素数さん
16/12/25 02:44:09.42 ycdX0iYo.net
>>615
>>604や>>617などの内容を補足説明すると
> Δrは、個別には有限の数列の長さだが、確率を考えるときは、集合としては、数列の有限の数列の長さに
> 上限はなく、無限大の極限を考える必要がある
とスレ主が書いているのは時枝戦略が不成立であることは決定番号の極限を考えないと理解できないよ
と言�
681:「たいのでしょう? それに対して極限をとって任意の無限数列を出題することが可能であると仮定するとそもそも決定番号の無限大の極限は 存在しないということです
682:華厳のパンダ ◆2VB8wsVUoo
16/12/25 02:45:35.79 O010A8Dr.net
数学を何だと思うかは「その人それぞれ」ですが、私の場合には構造と
いう考え方を重視するので、従って『数学の完成形はブルバキの形式』
という思想ですね。そもそも数学の価値とか意味は:
★★★『人間の都合とか恣意性を完全に排除する理性の象徴としての絶対神』★★★
であり、従ってある特定の数学に応用がアルか否かに関しては客観的な
判定基準なんて当然に存在しません。だから一見して応用がなさそうに
見えるものが後日に有用になったりします。但し甚大な応用がアル理論
は(その妥当性から)「ソコから豊かな構造が取り出せる場合がアル」
というだけの事でしょうね。
でもこれは人間に更に近い物理でさえそうであり、例えば黎明期の電磁
気学に膨大な応用がアルなんて事をFaradayやMaxwellが具体的に予想し
たとはとても思えない。そして「点接触型トランジスタ」を最初に発見
したShockley-Bardeen-Brattainが現代社会に於ける膨大な応用(とい
うかもはや社会構造の一部でさえある半導体集積回路)を予想した筈は
ないでしょう。
初代インテルチップの設計者のおひとりであられる嶋正利先生でさえも、
ご自分の貢献が(生きてるうちに!)神戸の京速計算機の基本構成要素
に使われるなんて、まさかお考えにはなられなかったのではないかと。
だから理学と工学の間の線引きなんて、そもそもナンセンスでしかない。
そういう目先の恣意的な違いに拘泥している場合ではないと、ノーベル
賞の大隅さんも警告なさったのでは?
学問とは、そして特に数学の場合は:
☆☆☆『非力で無能な人間が、全能の神を前にして平伏して苦悩するその姿そのもの』☆☆☆
という風に私は思って居ます。
¥