16/12/17 16:10:11.93 sIK9xcpB.net
>>361 つづき
本記事では,ホログラフィック公式を中心に,この3つの分野におけるエンタングルメント・エントロピーに関する最近の発展を解説する.まず2節では量子多体系のエンタングルメント・エントロピーを導入し,強劣加法性などの基本的性質について述べる.
また,エンタングルメント・エントロピーのスケーリングが,量子多体系の種々の相を区別するのに有効な指標であることを見る.次の3節では系のエネルギースケールを変えたときのエンタングルメントの変化を考察する.特に系が持つ「有効自由度」はエネルギーが低くなるにつれ減少するはずだが,
そのような有効自由度を測る関数が,エンタングルメント・エントロピーを用いることで具体的に構成できることを示す.
4節ではまずホログラフィー原理の具体例であるAdS/CFT対応を解説し,重力理論を用いたエンタングルメント・エントロピーのホログラフィック公式を導入する.その後,この公式が重要な性質である強劣加法性を満たすことを確認し,
AdS/CFT対応で記述される非フェルミ流体に触れる.最後に5節ではMERAと呼ばれる,繰り込み群の考え方に基づいた量子多体系のテンソルネットワーク波動関数を紹介し,MERAとAdS/CFT対応におけるホログラフィック公式の類似性を考察する.
(引用終り)