現代数学の系譜11 ガロア理論を読む26at MATH
現代数学の系譜11 ガロア理論を読む26 - 暇つぶし2ch391:現代数学の系譜11 ガロア理論を読む
16/12/17 15:59:54.58 sIK9xcpB.net
>>354-357
・なんで世の中、すその重い分布などが問題視されるのか? そこを、少しは考えたらどうだ? それが、大学レベルの確率論でしょ?
・すその軽い分布では、大数の法則や中心極限定理が成り立つ
・が、すその重い分布は、そうではない! だから扱いが圧倒的に難しいわけで、そこに、数学の研究ネタがある
・例えば下記東京大学 P13より引用すれば、”安定分布の一つの例はコーシー分布である.”、”対称な密度関数を持つ場合に限ると,安定分布の特性関数の標準形は
  Φ(t) = exp(-|t|^α )、0 <α≦ 2 で与えられる.α は安定分布の指数とよばれ,特にα = 2 の場合が正規分布である.
  α < 2 の安定分布の分散は無限大であり,α が小さくなるほど分布の裾が重くなる.”
  ”例外的ないくつかのα の値以外には密度関数が明示的に求められない.このことが安定分布の実用上の問題点となっている.
  しかしながら中心極限定理の一般化として安定分布が得られることは理論的には重要な事実であり,裾の重い分布の研究のなかで安定分布はやはり中心的な役割を果している(Rachev[19]).”
とあるよ
・ところで、例えば、>>349のような、鉛筆転がし、n面で、各面の確率1/n 一様分布 で、n→∞の極限を考えると、これは、ご指摘のように、安定分布でさえない。
 分散が無限大のみならず、平均値(期待値)でさえ、無限大になる
・さらにさらに、時枝の決定番号の確率分布は、一様分布より裾の重い分布になるよ
 だから、それは現代数学の確率論にのらない(おそらく扱えない)。ヴィタリ集合で、測度が扱えないのと同じだろう
・そして、それはSergiu Hart氏のgame2 ( >>181-182 )でも同じだ
 (可測になれば、直ちに確率が計算できるとはならないよ。上記で、分散は無限大になったり、平均値(期待値)が無限大になったりするからだが )
URLリンク(park.itc.u-tokyo.ac.jp)
日本統計学会創立75 周年記念出版
21世紀の統計科学
国友直人・山本拓監修
< Vol. III >
数理・計算の統計科学
北川源四郎1・竹村彰通2 編集
2008 年8 月(東京大学出版会)
2012 年1 月(増補HP 版)
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch