16/12/10 18:22:41.45 LjTObdCi.net
>>223 補足
これ前にも引用したが分かりやすいので再録
”(3) 指数 2> γ > 1 の時、母集団の期待値、分散両方とも発散する。中心極限定理は成立しない。”
URLリンク(heycere.com)
中心極限定理 ? 99.9%の科学?曖昧から確信へ:
(抜粋)
中心極限定理が成り立たない場合
もとの母集団に平均や分散が存在しない場合は、中心極限定理は成り立ちません。その場合は安定分布を持ちいた他の理論が存在します。母集団に平均や分散が存在しないとはどんな場合でしょうか?典型的な例は、分布の裾野がべき乗則に従う場合です。これをファットテールと言います。
母集団の分布の裾野(kが大きいところ)が、べき乗則f(k) ∝ k^γに従うとしましょう。すると、べき乗則の指数γによって、以下のように中心極限定理が成立する場合と、しない場合があります。
(1) 指数 γ > 3 の時、母集団の期待値、分散が両方とも有限であり、中心極限定理が成立する。
(2) 指数 3> γ > 2 の時、母集団の期待値は有限であるが、分散は発散する。中心極限定理は成立しない。しかしその場合でも、中心刻限定理の一部として、母集団からの取り出された標本(サンプル)の平均\bar{X}の分布は、平均\muに収束する事実は成立する。(大数の法則)
(3) 指数 2> γ > 1 の時、母集団の期待値、分散両方とも発散する。中心極限定理は成立しない。
(引用終り)