16/12/03 22:05:11.92 6Rgz8i9T.net
つづき
5.3.3 場の量子論の問題
これで一応,「初等的」な量子力学はおしまいになるのだが,実は場の量子論は未解決問題の宝庫である.この点について少し述べて結びとしたい.
場のような無限自由度の系では有限自由度の系と本質的な差がある.つまり,無限自由度のCCR の表現は(互いに同値でないものが)無数にある.
ということで26,これは大変な問題である.有限自由度の場合は一意性定理があったから,便利な表現をとって徹底的に調べれば良かった.
ところが場の理論では結果がどの表現をとるかによってくるわけだから,様々な表現を調べ,考えている物理的状況に合った表現をとる必要がでてくる.
このようなわけで,数学的な解析はかなり不満足な状況にある.(実は5.3.2 節で「○○がわかった」などと書いたのは「まあ,物理的に許せるくらいの議論で○○であると思われる」くらいの意味であって,数学的に満足のいく定理があるわけではない.)このような不満な状況を乗り越えるため,幾つかの試みがなされている.大きく分けると
? 公理論的場の理論:場の理論が満たすべき最低限の性質を仮定し(仮定した性質を満たす系の存在は仮定する),その中で厳密に導けることを証明しようとする試み.この成果としては「スピンと統計の関係」,「CPT 定理」などの一般的性質を導いたことが挙げられる.
? 構成的場の理論:公理論的場の理論がモデルの存在を仮定して一般的性質を求めたのに対し,具体的な個々のモデルから出発して実際に場の理論のモデルを作る試みである.成果としては2次元,3次元での意味のある場の理論のモデルの構成などが挙げられる.
? 作用素環論からのアプローチ:正準交換関係(やその仲間)の表現論をC?-環,von Neuman 環等の理論を用いて研究する方法.他の方法ではえられない,非常に細かい結果を得られることがある.
などの試みが続いている.
つづく