小学校のかけ算順序問題×14at MATH
小学校のかけ算順序問題×14 - 暇つぶし2ch598:132人目の素数さん
16/12/17 20:50:17.67 s03BTK6E.net
>>587
ちゃんと具体的に反論しろよ。
学校で習ったことしか知らない馬鹿はお前のほうだ。
馬鹿に限って、具体的な反論が出来ない。

599:132人目の素数さん
16/12/17 20:53:04.02 s03BTK6E.net
>>588
586のリンク先は、皆「dy/dxが本当の分数ではない」と教えているのだが、
実際に大学で微積分を教えている大学教授までも
「学校で習ったことしか知らない高校生」といいたいのかな?
お前は馬鹿丸出しだな。

600:132人目の素数さん
16/12/17 21:11:22.91 +3eRFwsm.net
>>589
教授はおそらくそうではないだろうが、
その教授が教えている学生のほとんどは
高校生の教科書範囲の数学で一生を終わる。
大学教程をネットで検索している低学歴が
何をいきっているの?笑えないよ。

601:132人目の素数さん
16/12/17 21:25:15.61 s03BTK6E.net
>>590
「dy/dxが本当の分数ではない」と教えている大学教授には反論できないのだな。
それと、584、585の内容にも「具体的な反論」はできないのだな。
お前は無自覚性の真性馬鹿だ。
>大学教程をネットで検索している
ネットに載っているのはこれくらいだが、それ以外におれの多数の同僚の情報も含めて、
国立の理系の大学の微積分ではほとんど「dy/dxが本当の分数ではない」と教えている。
それを知らないのはお前と@sekibunteisuuくらいだろうな。
外道めが。

602:132人目の素数さん
16/12/17 21:40:08.42 s03BTK6E.net
>>590
お前は知らないかもしれないが、
(∂^2 f)/(∂x∂y)=(∂^2 f)/(∂y∂x)は一般には成り立たない。
お前らの好きな順序変更ができないわけだ。
お前らに言わせると、「導関数や偏導関数は分数」なのに何故だ?

603:132人目の素数さん
16/12/17 22:14:52.14 FVpQe6lh.net
>>584
まずは「分数」と「本当の分数」の定義を正確にお願いします

604:132人目の素数さん
16/12/18 01:01:28.52 HtgkSP0z.net
作用素は非可換だけど積じゃないだろう

605:132人目の素数さん
16/12/18 08:47:09.78 7pHkbFCw.net
物理屋としちゃ、1階微分は分数感覚


606:だな。y/xで小さい変化をΔy/Δxとして、究極に小さい無限小でdy/dxとしてるから。 昔はそんな発想でもあったようだ。しかし数学の先生に「現代の微分はそうじゃない」と言われるのは承知してもいる。 「d/dxという演算子をyに作用させる」といったことだな。微分が無限小からデルタ-イプシロン論法に変わったせいだ。 演算子と考えれば、2階微分以降も同じ考え方でできることにもなるし、筋がいいのは認めねばなるまい。 dy/dxが結果的に分数のように扱えるのは正しいが、分数なんだとあまりにも強調するはまずいだろうな。



607:132人目の素数さん
16/12/18 10:21:23.29 /T0HlV6V.net
y=f(x)の点(x,y)での接線上の点を(dx,dy)とよぶ。
dx,dyそれぞれの値はひとつに決まらないが、dy/dxは一定になる。
普通の分数だね。
イプシロンデルタは、微積分を位相解析に落としこむための
ただの技巧で、字面もあまり美しくもない。
超実数から微小解析へ行くより手軽で学生に教えやすい
という以上の価値はない。
具体的な応用の計算をするとき、たいていの人は
他人とに見せる式はともかく本音は微小解析で考えているのだし。

608:¥ ◆2VB8wsVUoo
16/12/18 15:30:13.75 PXSJSVkX.net


609:¥ ◆2VB8wsVUoo
16/12/18 15:30:32.13 PXSJSVkX.net


610:¥ ◆2VB8wsVUoo
16/12/18 15:30:51.71 PXSJSVkX.net


611:¥ ◆2VB8wsVUoo
16/12/18 15:31:10.03 PXSJSVkX.net


612:¥ ◆2VB8wsVUoo
16/12/18 15:31:28.09 PXSJSVkX.net


613:¥ ◆2VB8wsVUoo
16/12/18 15:31:45.65 PXSJSVkX.net


614:¥ ◆2VB8wsVUoo
16/12/18 15:32:03.50 PXSJSVkX.net


615:¥ ◆2VB8wsVUoo
16/12/18 15:32:22.90 PXSJSVkX.net


616:¥ ◆2VB8wsVUoo
16/12/18 15:32:41.65 PXSJSVkX.net


617:¥ ◆2VB8wsVUoo
16/12/18 15:33:00.34 PXSJSVkX.net


618:132人目の素数さん
16/12/18 15:47:58.13 SJgLMShO.net
今の小学校は微積分やるの?

619:¥ ◆2VB8wsVUoo
16/12/18 16:47:24.48 PXSJSVkX.net


620:132人目の素数さん
16/12/18 17:59:50.77 PVFWUZlT.net
>>596
dx,dyそれぞれの値はひとつに決まらないというのは大嘘だな。
dxがひとつに決まらないのなら、
積分∫f(x)dxも1つに決まらなくなるぞ。
「dy/dxが普通の分数」だと信じている馬鹿は、
こういう嘘の説明を平気でやる。

621:¥ ◆2VB8wsVUoo
16/12/18 18:06:30.88 PXSJSVkX.net


622:132人目の素数さん
16/12/19 02:46:53.08 LX+Pukb+.net
>>609
なら、dxの値をひとつに決めてみろよ。
できるんかいな?

623:¥ ◆2VB8wsVUoo
16/12/19 07:22:55.62 Iw1P8Iao.net


624:¥ ◆2VB8wsVUoo
16/12/19 07:23:13.82 Iw1P8Iao.net


625:¥ ◆2VB8wsVUoo
16/12/19 07:23:32.55 Iw1P8Iao.net


626:¥ ◆2VB8wsVUoo
16/12/19 07:23:51.42 Iw1P8Iao.net


627:¥ ◆2VB8wsVUoo
16/12/19 07:24:09.59 Iw1P8Iao.net


628:¥ ◆2VB8wsVUoo
16/12/19 07:24:26.71 Iw1P8Iao.net


629:¥ ◆2VB8wsVUoo
16/12/19 07:24:43.51 Iw1P8Iao.net


630:¥ ◆2VB8wsVUoo
16/12/19 07:25:02.51 Iw1P8Iao.net


631:¥ ◆2VB8wsVUoo
16/12/19 07:25:22.03 Iw1P8Iao.net


632:¥ ◆2VB8wsVUoo
16/12/19 07:25:40.89 Iw1P8Iao.net


633:132人目の素数さん
16/12/19 07:42:00.73 505FgqVq.net
順序自由派「dx,dyそれぞれの値はひとつに決まらないが、dy/dxは一定になる。dy/dxは普通の分数だね。」
 →「dxがひとつに決まらないのなら、積分∫f(x)dxも1つに決まりませんが」
順序自由派「なら、dxの値をひとつに決めてみろよ。できるんかいな? 」
順序自由派は、「dx,dyそれぞれの値」と言い出すと自己矛盾に陥ることを理解できないようですね。
「dx,dyそれぞれの値」と言っている時点で、馬鹿丸出しなんですが。

順序自由派「微分や偏微分は普通の分数だよ。∂xと∂yも普通の数だよ。」
→「偏微分が普通の分数で∂xと∂yが普通の数なら、(∂^2 f)/(∂x∂y)=(∂^2 f)/(∂y∂x)が一般には成り立たないことをどのように説明するんですか?∂xと∂yが普通の数で∂x∂yと∂y∂xがそれぞれ掛け算であるなら、
∂x∂yと∂y∂xは等しくなっていないので、掛け算順序が大事なことになりますね。」
またもや順序自由派は、自己矛盾に陥ってますね。

634:132人目の素数さん
16/12/19 15:24:04.96 KArA6GgM.net
dx, dy や ∂x, ∂y は変数の扱いで、具体的値の代入は通常の解析では出来ない。
dy/dx はyに d/dx を作用させた記号で (d/dx)y とも書ける。dy/dx が分数というのは間違い。
もはや算数は洗脳教育になっているな。

635:132人目の素数さん
16/12/19 16:30:29.04 goZWfy8e.net
といってもyがxで微分可能であるのならば, Δy/Δx=dy/dx+O(Δx)であり,
O(Δx)の部分が悪さをしない限り分数と同じ演算が成り立ってしまう
のである. そういう意味で大抵の場合Δxの代わりにdxとおいて,
dy/dxを分数として, またO(Δx)部分を無視して定式化しても問題なく,
それは物理などで一般的な関数しか扱わない場合ではよく行われることである.
もちろん便宜上dx, dyが実際の数のように定式化してるだけで実際は記号で
しかないことは認識するべきだが, 実用性の面からこの定式化を認めざるを
得ない部分はある. ∞みたいなものだ.
ただ偏微分では変数の固定の仕方によって微小量の意味が変わるため,
f(x,y)=0 のとき dy/dx=-(∂f/∂x)/(∂f/∂y)
∂x(y,z)/∂y*∂y(z,x)/∂z*∂z(x,y)/∂x=-1
となるなど一般的な関数に対しても問題が生じるので,
∂x,∂yを独立した量と考えることはまずない.
それはそうとこの話は積の順序とはほとんど関係ないな.

636:132人目の素数さん
16/12/19 16:52:36.42 lyhcu8fF.net
f(x,y)=0 のとき dy/dx=-(∂f/∂x)/(∂f/∂y)となるのは全微分を考えればわかる。2つの∂fの意味が異なるだけで、分数的であることには変わりない。

637:132人目の素数さん
16/12/19 17:27:44.92 505FgqVq.net
>>623 もはや算数は洗脳教育になっているな。
dy/dxが本当の分数だというトンデモを言ってるのは@sekibunnteisuuとかの連中なんだよ。
算数が洗脳教育になっているのではなく、
「算数は洗脳教育になっている」と言ってる連中が、「dy/dxが本当の分数」という洗脳教育をしようとしているのだよ。
>>624
Δy/Δx=dy/dx+O(Δx) は間違いだな。
Δy/Δx=dy/dx+o(1) あるいは Δy=(dy/dx)Δx+o(Δx)だな。
いずれにしてもOではなくoだ。あんたも理解が不十分だね。
微分や偏微分が本当の分数ではなく、微積分のcalculusをやるために分数表示の体裁をとっているだけだ、というのはその通りだが。
>それはそうとこの話は積の順序とはほとんど関係ないな.
偏微分を普通の分数だと言い始めると、分母も普通の数になり、掛け算順序の話になってしまうということ。

638:132人目の素数さん
16/12/19 18:18:02.26 goZWfy8e.net
ビッグオーならO(Δx), スモールオーならo(1)でどっちも正しいんじゃないのか?
まあいいが, 偏微分は普通の分数でないのだから交換しないと言うのなら,
普通の数の普通の分数なら交換は自明だとしても問題ないと考えていいのでは
ないか?

639:132人目の素数さん
16/12/19 18:33:56.13 goZWfy8e.net
まあ確かにΔx→0でΔy/Δx→dy/dxの定義を直接反映するのは
Δy/Δx=dy/dx+o(1)か, C2級でないとこうしないとまずいんだろな,
数学が専門なわけではないのですまんな.

640:132人目の素数さん
16/12/19 18:42:40.50 505FgqVq.net
>>627
ビッグオーO(Δx)とスモールオーo(1)は同じではない。
Δy/Δx=dy/dx+O(Δx) が成り立つことと、Δy/Δx=dy/dx+o(1)が成り立つことは数学的に全然別のこと。

>>624 yがxで微分可能であるのならば, Δy/Δx=dy/dx+O(Δx)
yがxで微分可能でも, Δy/Δx=dy/dx+O(Δx)が成り立たないこともある。たとえば、
yがxで微分可能でも, Δy/Δx=dy/dx+O(ルート(Δx))すなわちΔy/Δx=dy/dx+O(\sqrt{Δx})となることがある。
この場合、Δy/Δx=dy/dx+o(1)は成り立っているが、Δy/Δx=dy/dx+O(Δx)は成り立っていない。
あんたはもう一回微積分をやり直したら?

641:132人目の素数さん
16/12/19 18:47:12.08 505FgqVq.net
>>628
まあいいよ、あんたは@sekibunnteisuu よりは微積分がわかっているから。
@sekibunnteisuuというのは本当にどうしようもないアホだ。

642:132人目の素数さん
16/12/19 19:19:51.70 3Z+nW/Pk.net
Δy/Δxは分数である

643:132人目の素数さん
16/12/19 22:27:50.74 4TOLGJ31.net
算数や数学の楽しさを教えてくれるスレはありますか?
このスレはつまらん

644:132人目の素数さん
16/12/19 23:08:03.56 Nz/IKoyB.net
>>630
あんたら、Δy,Δxとdy,dxの区別が曖昧なだけじゃないか。
近似は近似でしかなく、両者は同一視はできない。
{(x,y)|y=f(x)}上の点(x,y)における接線を
{(x,y)+(dx,dy)}とおくと、{(dx,dy)}は直線になる。
xもdxも単独で値は決まらないが、dy/dxは
f(x)がそのxで微分可能なら一定の値に定まる。
dxの値が決まらないとか、馬鹿?
その事情はxと変わりない。
高校生ばかりが猛威をふるっているようだが、
微分幾何をかじった奴は一人もいないのか?

645:132人目の素数さん
16/12/20 11:34:47.55 jt0py51j.net
>それはそうとこの話は積の順序とはほとんど関係ないな.
まあね
積の順序は小学校のかけ算順序問題とはほとんど別問題だけどね

646:132人目の素数さん
16/12/20 12:06:45.26 W9WVAIpS.net
その論理に則ると、正方行列 A


647:∈GL(2;R) (||A||<2) に対し、 (d/dt)exp(tA) が分数ということになるが、 (d/dt)exp(tA)=Aexp(tA) は正方行列だから、 de^{tA}/dt についておかしなことが生じることがあるな。 分数は1次の正方行列だから特殊な扱いだ。



648:132人目の素数さん
16/12/20 14:41:25.46 zaKKe+34.net
上の話でdy/dxが分数だったのは、
dx,dyがスカラーだったからで、それは
x,yがスカラーだった結果だ。
x,yがスカラーでない例では、
普通の分数にはならないが、
空間{(dx,dy)}を特徴づける量を考えるのだ
ということに変わりはない。
dxが存在しないことにはならない。

649:132人目の素数さん
16/12/20 15:24:00.67 W9WVAIpS.net
そうすると、dy=(∂y/∂x)dx が量になって、dx は空間の扱いになるが。

650:132人目の素数さん
16/12/20 16:46:53.15 W9WVAIpS.net
外微分を考えたとき、全微分について dx が量であると同時に
接ベクトルの双対空間として扱えるようになる。
yがxの1変数の関数の場合は問題がないが、yが変数 x_1,…,x_n の
多変数関数の場合は一般には dx_i は量ではなく空間の扱いになる。
yが多変数関数でも dy が量になる。

651:132人目の素数さん
16/12/20 17:01:14.10 EPkBdOzD.net
双方論点がズレてるね。
小学生にどう教えるかが重要なんだけどな。
9.0の件や太陽が動いているの件もそうだけど
小学生の理解度を知らない奴らが勝手に言い合ってるって印象だな。

652:132人目の素数さん
16/12/20 18:09:32.85 W9WVAIpS.net
誰にでも分かるような教え方はない。
そのような教え方がないからこそ、長い間議論が続いて来た訳。
教え方は、教師より、むしろ親などに委ねた方がいい。
教師は柔軟性を持つことが大事。画一的な教育は洗脳教育につながる。
日本は学歴社会だが、高校までの学歴より、最終学歴が社会に出てから重要になる。
これは、教育上意識しておくべき大事なことだろう。

653:132人目の素数さん
16/12/20 18:47:49.81 i8th6xVu.net
>>633 {(x,y)+(dx,dy)}とおくと、{(dx,dy)}は直線になる。xもdxも単独で値は決まらないが、dy/dxはf(x)がそのxで微分可能なら一定の値に定まる。
その書き方自体おかしいが、dxとdyはそれぞれ定数倍の不定性があると言いたいのかな?
もしそうなら、積分∫f(x)dxも定数倍の不定性があることになるが、どう説明するのかな?
まさか、dy/dxのdxと、∫f(x)dxのdxは違う、なんてことを言わないよな?
>微分幾何をかじった奴は一人もいないのか?
お前自身が微分幾何を知らないことは、お前が633で書いた馬鹿内容を見るとよくわかる。
お前は微分幾何以前に微分そのものを知らないのようだ。
たとえば普通の2次元のユークリッド計量(ds)^2=(dx)^2+(dy)^2において、
dxとdyがそれぞれ定数倍の不定性があるのなら、
(ds)^2=(dx)^2+(dy)^2は2重の不定性があることになるが、どのように説明するのかな?

>>635
(d/dt)exp(tA) を考えるのに、 A∈GL(2;R) (||A||<2) という条件は不要だな。
もっとも行列を持ち出すこと自体、トンチンカンだがな。

654:132人目の素数さん
16/12/20 18:50:16.11 EPkBdOzD.net
>>640
実績のない人間が言っても説得力ゼロだけどな

655:132人目の素数さん
16/12/20 18:53:50.49 i8th6xVu.net
ちなみに小平邦彦は岩波基礎数学の解析入門で
「dy/dx=lim Δy/Δxの定義において、dx,dyには意味はない」と書いている。
このスレには微分の基本すらも知らない馬鹿が多い。
一旦dy/dx=lim Δy/Δxの定義を離れた上で、
dxとdyの定義を別に与えることは可能だが、
「Δy/Δxが分数だから、dy/dxも分数」と答えるのは、ただの馬鹿。

656:132人目の素数さん
16/12/20 18:55:33.38 EPkBdOzD.net
この問題は数学の話ではなく教育のイデオロギーに関する話なの。
公教育は個性など尊重する必要ない。
そもそもその程度のことで個性が潰されるものではない。
もう少し教育について調べてから書き込んでもらいたいものだ

657:132人目の素数さん
16/12/20 19:45:16.95 i8th6xVu.net
公教育を批判する連中が、実は間違った数学の知識を正しいと頑なに信じているんだよな。
その間違った知識に基づいて自分のローカルルールを押し付けて公教育を批判するんだよな。
もちろん公教育が全て正しいとは言わないが、批判する連中も最低限のまともな知識を身に付けるべきだよな。

658:132人目の素数さん
16/12/20 22:50:31.27 MrnHPDKB.net
いや結局先生の理解度が足りないから融通の利かない採点をするし,
それに対して納得のいく説明ができないのでは? 実際(算数ではないが)
小学校の先生の知り合いは生徒に聞かれて完全に嘘教えちゃったことも
あったと言っていた. 個性とか洗脳とかそういう話なのか?

659:132人目の素数さん
16/12/20 22:57:53.79 IiWGjO9o.net
間違いは良いけど嘘の強要はダメですよ

660:132人目の素数さん
16/12/20 23:06:52.71 vooj1HLq.net
小学校の先生の知り合いは

661:132人目の素数さん
16/12/20 23:36:12.95 7eI1x8Ue.net
>>643小平邦彦は、嘘はついていない。
「dy/dx=lim Δy/Δxの定義において、dx,dyには意味はない」
dx,dyは単独でも意味を持ち、dy/dxはその比で=lim Δy/Δxが成り立つが、
dx,dyの定義を捨ててdy/dxという記号の意味をlim Δy/Δxのみに矮小化
するならば、その定義においてdx,dyには意味はなくなる。
小平は、「この本は、そういう解析学の本だ」と言いたかったのだろう。
教科書準拠の高校生向きの本という意味で。でも、それって
数学とは少し違うよね。「高校数学」は数学ではないから。

662:132人目の素数さん
16/12/20 23:36:37.84 4o+u8to2.net
>>646
違うナー
小学校は小テストがあまりにも多すぎて、しょっちゅう採点する必要があるのに教員の空き時間がほぼ無いから
仕方ないので隣同士で答案を交換しあって○付けさせるんだよ。
そのために、正解を一つに絞るだけだ。
中学校になると、正解が幾つもあるものがでてくるし、子供も普通に順応する。隣同士交換して○付けということも
無くなるシナ。

663:132人目の素数さん
16/12/20 23:48:54.81 MrnHPDKB.net
それだけの理由としたらなぞなぞみたいな理不尽さだな、
まあ小学校だしなあ. 成績とか意味ないしなあ.

664:132人目の素数さん
16/12/20 23:55:30.93 4o+u8to2.net
なぞなぞじゃない。手法はこうだ!
あらかじめ、複数の解き方や考え方を子供自身に出させて、話し合わせる。
その中で「もっとも簡潔なモノを一つ子供自身に選択させる」だけだよ。
9.0を9と書かなきゃいけないというルールもこれで作り上げることができる。

665:132人目の素数さん
16/12/20 23:58:32.24 IiWGjO9o.net
馬鹿に合わせるポピュリズム

666:132人目の素数さん
16/12/21 00:04:09.64 7y0O4tvR.net
多分、キミが想像する「馬鹿」ってのは、普通の小2だと思うよw
実際の小2に接してみろよ。唖然とするから。

667:132人目の素数さん
16/12/21 00:28:23.62 gdCoz+yw.net
9.0が普通の感覚なのにすごいな今の小学校は
順序もあったり大変だと思う

668:132人目の素数さん
16/12/21 01:37:19.87 7y0O4tvR.net
解析概論にはこうあったな。
> "f'(x)・△x を点x における函数y=f(x) の微分と名づけて、それを dy で表わすことに
> する.すなわちこの定義によれば
>              dy=f'(x)・△x.       (4)
> 今同様の意味において、x それ自身をx の函数とみれば、x'=1だから、
>             dx=△x.
> 故に上記の定義の下において、△x はx の函数なる x の微分である.これを (4) に代入すれば、
>             dy=f'(x)dx         (5)
> これを
>             dy/dx=f'(x)        (6)
> と書くならば、記号dy/dx においてdx および dy が各々独立の意味を有するから、
> dy/dx は商としての意味を有する。
ふむ。まあ本論にはあまーり関係無いけど。
>>655
仕方ないんだよ。何でも自由だとそりゃ教師自身が楽でそっちの方が楽しいのだが
子供が混乱する。子供自身が「やり方や答えを一つに絞って欲しい」みたいなことを
明言するからな。

669:132人目の素数さん
16/12/21 04:48:15.24 KunV


670:9jzN.net



671:132人目の素数さん
16/12/21 06:02:59.78 KunV9jzN.net
縦×横が 10×10 マスの盤面のように、縦が上から下へ、横が左から右へ
0,1,2,…,9 と数を並べて縦の数と横の数の積を対応するマスに埋めて出来るような
九々の計算表を用意する。このような計算表は 0×0 と 9×9 のマスとを結ぶ
対角線について対称になってマスに積が入っている。例えば、1×3 と 3×1 の積3は
2×2 のマスに入った積4について対称になっている。このような九々の計算表の対称性に気付けば、
0×0 の方から 9×9 の方へと対角線上を辿るようにしながら順番に最終的には
可換な計算が出来る掛け算を一緒にペアで積が等しくなることを確認させつつ教えて行けば簡単な話。
例えば、1×3 と 3×1 を教えるときは、これらの積が3で積が等しくなることを確認させつつ教える。
分からない人にとっては、どう考えても 0×0 や 1×1 の掛け算の方が 9×9 より簡単な筈。
習ったときは、九々の計算なんかよりむしろ分数で躓く人が多いとされていて、
小学生が難しく感じるのは、九々の計算の可換性より分数の筈なんだが。

672:132人目の素数さん
16/12/21 06:18:50.77 yXjgJ3zc.net
>>649
高校数学も数学じゃないのか。
高校生に本当の数学を教える必要はないのか?
教えられないのは高校教師の怠慢か?

673:132人目の素数さん
16/12/21 06:41:24.39 KunV9jzN.net
>>641
悪い。
>>657の「>>640」は「>>641」の書き間違いだった。

674:¥ ◆2VB8wsVUoo
16/12/21 07:27:04.56 0N19MYRA.net


675:¥ ◆2VB8wsVUoo
16/12/21 07:27:22.78 0N19MYRA.net


676:¥ ◆2VB8wsVUoo
16/12/21 07:27:41.69 0N19MYRA.net


677:¥ ◆2VB8wsVUoo
16/12/21 07:28:00.55 0N19MYRA.net


678:¥ ◆2VB8wsVUoo
16/12/21 07:28:16.91 0N19MYRA.net


679:¥ ◆2VB8wsVUoo
16/12/21 07:28:34.81 0N19MYRA.net


680:¥ ◆2VB8wsVUoo
16/12/21 07:28:52.56 0N19MYRA.net


681:¥ ◆2VB8wsVUoo
16/12/21 07:29:12.21 0N19MYRA.net


682:¥ ◆2VB8wsVUoo
16/12/21 07:29:29.47 0N19MYRA.net


683:¥ ◆2VB8wsVUoo
16/12/21 07:29:48.95 0N19MYRA.net


684:132人目の素数さん
16/12/21 19:15:33.91 uW6sXN3d.net
>>649
お前は小平邦彦が言ったことを歪曲しているな。
まずはdy/dx=lim Δy/Δxの定義があり、
dx,dyに別の定義を与え、単独で意味を持たせるのはその後の話。
もっともdx,dyに別の定義を与え、単独で意味を持たせる話は微分の範疇の一部でのみ通用し、
積分になると通用しないけどね。dx=Δxなら積分を∫f(x)Δxとかいていいかというと、それは別問題。
あるいは微分方程式をf(y)dy=g(x)Δxとかいていいかというと、それは別問題。

>小平は、「この本は、そういう解析学の本だ」と言いたかったのだろう。教科書準拠の高校生向きの本という意味で。
岩波基礎数学は「教科書準拠の高校生向きの本」ではない。大学生向けの本だ。
お前が岩波基礎数学を知らないということは、お前が数学の素人であることを意味する。
数学の素人が話しを歪曲させて自分流のローカルルールを押し付けるのはやめてもらいたいね。

>>657 微分幾何の話をするにあたり不要なのは、||A||<2 なる条件だぞ。
(d/dt)exp(tA) を考えるのに、微分幾何の話は関係ない。
exp(tA)や (d/dt)exp(tA) は、任意の正方行列でOKだ。
A∈GL(2;R) も||A||<2も両方とも不要の条件だ。
こんなことも知らないで、リー郡やリー環の話を持ち出すのかな?
「ぼくちゃん、りーぐんのことをしってまちゅ。かちこいでちゅか?」とでも言いたいのかな?

ID:7eI1x8UeやID:KunV9jzNのような「ドシロウト」が自分流のローカルルールを押し付けるのはやめてもらいたいね。

685:132人目の素数さん
16/12/21 23:40:30.07 7y0O4tvR.net
>>658
まあ、九九からかけ算の交換法則を直感するのは、大抵の子ができるよ。
できないのは…
>習ったときは、九々の計算なんかよりむしろ分数で躓く人が多いとされていて、
>小学生が難しく感じるのは、九々の計算の可換性より分数の筈なんだが。
ということで、分数や小数の文章題で乗法か除法か訳が分からない状態になることが
多いって事。そのために、かけ算順序を固定して、乗法とは何かを延々確認するわけだ。

686:132人目の素数さん
16/12/21 23:47:18.50 UwYnY41g.net
分数で躓いた記憶が無い
都市伝説だと思ってた

687:132人目の素数さん
16/12/22 00:18:40.72 GW3rGZ1k.net
ここは数学脳の持ち主のすくつだから、それを基準にしたらいかんよ。

688:132人目の素数さん
16/12/22 03:32:07.30 uIU5ui7d.net
>>671
>(d/dt)exp(tA) を考えるのに、微分幾何の話は関係ない。
>exp(tA)や (d/dt)exp(tA) は、任意の正方行列でOKだ。
>A∈GL(2;R) も||A||<2も両方とも不要の条件だ。
そうだとしよう。Fを標数2の有限体とし、A∈M(n;F) nは2以上の自然数 としよう。
このとき、exp(tA) や (d/dt)exp(tA) を考えることは微分幾何なのか?
是非答えて頂きたい。プロだから分かるよな。

689:132人目の素数さん
16/12/22 05:22:08.42 uIU5ui7d.net
M(n;F) は有限体Fの零元0を成分に持つ2次の零行列Oを単位元とする加法群で、
F^n は零元 0∈F を成分に持つ0ベクトルoを単位元とする加法群である。
加法群 M(n;F) から F^n への準同型fが存在し、fは同型でもあるから、
M(n;F) と F^n とは同型である。F^n は集積点を持たず離散距離空間である。
従って、M(n;F) は離散距離空間として扱える。M(n;F) の2つの正方行列の成分には
標数を2とする加法の演算を施すことが出来る。
だから、exp(tA)=Σ_{k=0,1,…,+∞}(1/(k!))(tA)^k の右辺が定義されないことになる。
そもそも、各 k=0,1,… に対して 1/k! は有理数で、有理数体Qはアルキメデス付値体、
Aの成分は非アルキメデス付値体Fに属するから、(1/(k!))(tA)^k k=0,1,… が定義出来ない。
こういうのを定義するために A∈GL(2;R) とかが必要になる訳で。
例え exp(tA) が定義出来たとしても、知る範囲では微分幾何ではない。
>>671
スレタイに関係ない微分幾何の話だというのに、他人との話の細部に首を突っ込むなよ。
>岩波基礎数学は「教科書準拠の高校生向きの本」ではない。大学生向けの本だ。
昔の優秀な高校生は解析概論を読んでいたそうで、
岩波講座基礎数学の解析学の一部は解析概論よりは内容が簡単だから、
優秀な高校生なら岩波講座基礎数学の解析学の一部は読めるぞ。
そのシリーズの解析学の本には本当に難しいのがまだある。
岩波書店には色々あって、「岩波講座数学」や「岩波講座応用数学」といった
タイトルが似た別のシリーズもあるから、「岩波講座基礎数学」を
「岩波基礎数学」とは端折らない方がいいぞ。場合によっては紛らわしくなる。

690:132人目の素数さん
16/12/22 06:51:36.45 bzAo1ALe.net
>>675
俺は「exp(tA) や (d/dt)exp(tA) を考えることは微分幾何」とは一言も言っていないのだが、お前は馬鹿なのか?
レスを遡ってみても、「exp(tA) や (d/dt)exp(tA) を考えることは微分幾何」と言ってる奴は誰もいない。お前くらいのものだ。
俺は「exp(tA)や (d/dt)exp(tA) を考えるときは、任意の正方行列でよく、A∈GL(2;R) も||A||<2も両方とも不要の条件だ」、といったのだが。
それに対するお前の返答は「そうだとしよう」という、間抜けなものだが、「そうだとしよう」ではなく、「そうなのだ」。
ほんと、お前は低能だな。標数2の有限体を持ち出すこと自体、トンチンカン。
>676
優秀な高校生が大学の本を読んでも、その本が「教科書準拠の高校生向きの本」ということにはならない。
649は「小平が高校生向けに、普通の数学とは違う説明をした」といっており、それが大嘘であることを俺は言ったわけだが、お前は読解力がないのか?
>「岩波基礎数学」とは端折らない方がいいぞ。場合によっては紛らわしくなる。
数学者仲間では「岩波基礎数学」といえば、あのシリーズを指していることが十分通じる。
お前はやはりプロを偽装した素人だな。

691:132人目の素数さん
16/12/22 07:53:18.50 uIU5ui7d.net
>>677
>標数2の有限体を持ち出すこと自体、トンチンカン。
岩波講座基礎数学の線型代数シリーズでは基本方針として体を一般的に扱っている。
M(n;R) は n^2 次のユークリッド空間で M(n;R) を考えた時点で
exp(tA)や (d/dt)exp(tA) は定義され行列の指数写像はリー群と考えることが多い。
こういうのは、連続群論にも出て来るだろう。
>優秀な高校生が大学の本を読んでも、その本が「教科書準拠の高校生向きの本」ということにはならない。
え~と、解析入門Ⅰの「はじめに」の出だしには「この解析入門は高校数学を終了して本講座の解析学を学ぼうとする人
のための入門書であって, 高校数学と現代の解析学の橋渡しをすることを目標として書かれたものである. (抜粋)」とある。
この


692:文の「高校数学と現代の解析学の橋渡しをすることを目標として書かれた」の部分と、「はじめに」の最後の方の文 「高校数学については東京書籍発行の "数学Ⅰ, Ⅱ, B, Ⅲ"を参照した.」とをどう組合せて解釈するかが争点になるが、 ①:「小平が高校生(程度の能力を持つ人)向けに、(大方の人が知っている)普通の数学とは違う説明をした」と補って解釈すれば何も違和感は生じない。 ②:書かれた文を「文字通りに」解釈すれば確かにおかしくなる。 普通の感覚では出だしの「はじめに」の文章からクソマジメに本文を読む感覚で読む人はいないだろうな。 ましてや、著者本人がどういう気持ちで解析入門を書いたかなど知る術はない。 だから、何ともいえない。それが正しい判断だぞ。本当にどうでもいいことに口を出す人だな。



693:132人目の素数さん
16/12/22 09:04:41.59 BuXOMFnJ.net
数学のワードだけは知ってて、その本質はまるで知らない奴がネットには多いけど
ID:uIU5ui7dはその典型例だな

694:132人目の素数さん
16/12/22 09:22:31.14 uIU5ui7d.net
exp(tA) は微分方程式にも応用出来るとでもいいたげだな。
実際にそうではあるけど。

695:132人目の素数さん
16/12/22 10:56:41.79 utVMr3cM.net
どこぞの某はXXだと言いたいだけの話題、いつまで続ける気だよ

696:¥ ◆2VB8wsVUoo
16/12/22 12:26:36.48 rdvMKUKs.net


697:¥ ◆2VB8wsVUoo
16/12/22 12:26:53.99 rdvMKUKs.net


698:¥ ◆2VB8wsVUoo
16/12/22 12:27:10.67 rdvMKUKs.net


699:¥ ◆2VB8wsVUoo
16/12/22 12:27:27.14 rdvMKUKs.net


700:¥ ◆2VB8wsVUoo
16/12/22 12:27:43.89 rdvMKUKs.net


701:¥ ◆2VB8wsVUoo
16/12/22 12:28:00.99 rdvMKUKs.net


702:¥ ◆2VB8wsVUoo
16/12/22 12:28:17.69 rdvMKUKs.net


703:¥ ◆2VB8wsVUoo
16/12/22 12:28:34.66 rdvMKUKs.net


704:¥ ◆2VB8wsVUoo
16/12/22 12:28:56.29 rdvMKUKs.net


705:¥ ◆2VB8wsVUoo
16/12/22 12:29:12.79 rdvMKUKs.net


706:132人目の素数さん
16/12/22 17:29:50.47 bzAo1ALe.net
>>678
このスレは、「算数あるいは数学教育の固定観念を如何に払拭するか」がテーマだが、
お前が「 M(n;R) を考えた時点でexp(tA)や (d/dt)exp(tA) は定義され行列の指数写像はリー群と考えることが多い」という固定観念にとらわれているのは滑稽だな。
exp(tA)や (d/dt)exp(tA) は、基本は、任意の正方行列A(A∈GL(2;R)でなくてよい)で考えるが、必ずしもリー群の枠組みでは考えない。Aが作用素になることもあるしな。
「必ずリー群の枠組みで考える」というのは固定観念以外の何物でもない。
お前は固定観念のかたまりだよ。

>岩波講座基礎数学の線型代数シリーズでは基本方針として体を一般的に扱っている。
岩波基礎数学の別シリーズでは基本方針として体を一般的に扱うのは当たり前だが、こいつは馬鹿か?

>え~と、解析入門Ⅰの「はじめに」の出だしには
小平の本を正確に引用すると、
「この第1分冊を書くに当たって参考にしたのは高木貞治先生の名著”解析概論”である。
”解析概論の影響は随所に見られると思う。
高校数学については東京書籍発行の "数学Ⅰ, Ⅱ, B, Ⅲ"を参照した」
とある。
大学の微積分の本を書くに当たって高校数学の本も参照するのはよくあること。
だからといって内容が高校レベルでは決してない。
ちなみに小平の解析入門Ⅰには、ε-δ論法がちゃんと出てくる。

679の言うように、ID:uIU5ui7dは数学のワードだけは知ってて、その本質はまるで知らない馬鹿だな。

707:¥ ◆2VB8wsVUoo
16/12/22 17:35:31.52 rdvMKUKs.net


708:¥ ◆2VB8wsVUoo
16/12/22 19:51:47.85 rdvMKUKs.net


709:¥ ◆2VB8wsVUoo
16/12/22 19:52:02.58 rdvMKUKs.net


710:¥ ◆2VB8wsVUoo
16/12/22 19:52:19.23 rdvMKUKs.net


711:¥ ◆2VB8wsVUoo
16/12/22 19:52:36.12 rdvMKUKs.net


712:¥ ◆2VB8wsVUoo
16/12/22 19:52:53.65 rdvMKUKs.net


713:¥ ◆2VB8wsVUoo
16/12/22 19:53:11.38 rdvMKUKs.net


714:¥ ◆2VB8wsVUoo
16/12/22 19:53:28.16 rdvMKUKs.net


715:¥ ◆2VB8wsVUoo
16/12/22 19:53:46.62 rdvMKUKs.net


716:¥ ◆2VB8wsVUoo
16/12/22 19:54:04.87 rdvMKUKs.net


717:132人目の素数さん
16/12/23 06:45:21.22 zmNmHX9F.net
>>692
>Aが作用素になることもあるしな。
作用素と考えても、それらを有界とすると、もはやその空間Bはリー群になる。
だから、Bがリー群でないのは作用素が非有界つまり不連続のときだが、
不連続な作用素を考えて意味がある場合は、限られて来るな。例えば、漸化式とかを考えるときとか。
非有界な作用素でも、それらの空間は位相群にはなる。
そもそも、リー群の話は、他の人と微分幾何の話をするにあたり A∈GL(2;R), ||A||<2 と書いたことから
始まった訳だが、A∈GL(2;R) などのように書くか書かないかで、リー群を考えるとき群構造は異なる。
GL(n;R) は行列の乗法について群だが、M(n;R) は加法群になる。
だから、GL(n;R)⊂M(n;R) だからといって単純に一般化すればいいって訳ではない。構造が違う。
>岩波基礎数学の別シリーズでは基本方針として体を一般的に扱うのは当たり前
線型代数シリーズのことを書いたのに、別のシリーズのこと「だけ」をレスに書いてどうする?
固定観念という言葉を複数回�


718:gって罵倒しているが、高校数学と大学の数学を切り離して考えるのはよくないな。 ときには、高校から大学の内容になったり大学から高校の内容になったりする代物もあるしな。 ε-δで定義しようと極限で定義しようと収束性という内容を扱っていることには変わりはないがな。 曖昧さが残るという欠点があるが、極限で定義した方が高校生には扱いやすいというだけで。 扱い易い方法「だけ」で教えるというのも或る種の固定観念だな。 闇雲に人を「罵倒していて」数学教育のことを考えているようだが、 こういう人間に教えられた人は恐らく不幸だろうな。



719:132人目の素数さん
16/12/23 07:17:02.59 zmNmHX9F.net
>>692
>>703
>不連続な作用素を考えて意味がある場合は、限られて来るな。
というのは、非有界な作用素の空間Bがリー群とはならない
ようなBの不連続な作用素を考えたときの話だぞ。

720:¥ ◆2VB8wsVUoo
16/12/23 07:32:27.10 4DBBdpBR.net


721:¥ ◆2VB8wsVUoo
16/12/23 11:21:59.53 4DBBdpBR.net


722:¥ ◆2VB8wsVUoo
16/12/23 11:22:16.72 4DBBdpBR.net


723:¥ ◆2VB8wsVUoo
16/12/23 11:22:33.22 4DBBdpBR.net


724:¥ ◆2VB8wsVUoo
16/12/23 11:22:48.74 4DBBdpBR.net


725:¥ ◆2VB8wsVUoo
16/12/23 11:23:02.88 4DBBdpBR.net


726:¥ ◆2VB8wsVUoo
16/12/23 11:23:21.53 4DBBdpBR.net


727:¥ ◆2VB8wsVUoo
16/12/23 11:23:37.63 4DBBdpBR.net


728:¥ ◆2VB8wsVUoo
16/12/23 11:23:55.79 4DBBdpBR.net


729:¥ ◆2VB8wsVUoo
16/12/23 11:24:12.98 4DBBdpBR.net


730:132人目の素数さん
16/12/25 13:56:54.94 S2b9hHvf.net
↓ここからみんな仲良し
3×5も5×3も同じだよね

731:132人目の素数さん
16/12/25 16:01:57.49 HoNiNgIw.net
>>715
3万円の風俗5回と5万円の風俗3回では
使った金は同じでもサービス内容と満足度は微妙に違うかも。

732:¥ ◆2VB8wsVUoo
16/12/25 16:06:47.43 O010A8Dr.net


733:132人目の素数さん
16/12/25 16:13:14.70 S2b9hHvf.net
>>716
じゃあ5万円の風俗5回にしとこうか

734:¥ ◆2VB8wsVUoo
16/12/25 16:15:44.39 O010A8Dr.net


735:¥ ◆2VB8wsVUoo
16/12/25 16:22:30.77 O010A8Dr.net


736:¥ ◆2VB8wsVUoo
16/12/25 16:22:50.43 O010A8Dr.net


737:¥ ◆2VB8wsVUoo
16/12/25 16:23:10.95 O010A8Dr.net


738:¥ ◆2VB8wsVUoo
16/12/25 16:23:31.35 O010A8Dr.net


739:¥ ◆2VB8wsVUoo
16/12/25 16:23:50.09 O010A8Dr.net


740:¥ ◆2VB8wsVUoo
16/12/25 16:24:08.19 O010A8Dr.net


741:¥ ◆2VB8wsVUoo
16/12/25 16:24:28.28 O010A8Dr.net


742:¥ ◆2VB8wsVUoo
16/12/25 16:24:49.47 O010A8Dr.net


743:¥ ◆2VB8wsVUoo
16/12/25 16:25:08.67 O010A8Dr.net


744:132人目の素数さん
16/12/25 16:35:36.09 HoNiNgIw.net
>>718
5万円×5回が25回じゃなくてなぜ25万円になるの?っていうふうに小学生が聞いてくると
どう答えるの?

745:¥ ◆2VB8wsVUoo
16/12/25 16:41:51.81 O010A8Dr.net


746:132人目の素数さん
16/12/25 17:12:28.64 S2b9hHvf.net
5万円で25回もしたらお姉さん大変だからね、しかたないね

747:¥ ◆2VB8wsVUoo
16/12/25 17:50:19.60 O010A8Dr.net


748:132人目の素数さん
16/12/25 21:18:18.11 x6jIP/tR.net
値段はふつう1個あたりとか1回あたりで表示するからな
1万円あたりで何個買えるとか何回できるとかで表示する慣習の業界あるか?

749:¥ ◆2VB8wsVUoo
16/12/25 21:21:46.93 O010A8Dr.net


750:¥ ◆2VB8wsVUoo
16/12/25 21:23:48.29 O010A8Dr.net


751:132人目の素数さん
16/12/25 21:40:19.78 S2b9hHvf.net
ぱっと思いついたのはゲーセンなんかの貸メダルでした

752:¥ ◆2VB8wsVUoo
16/12/25 21:48:41.82 O010A8Dr.net


753:¥ ◆2VB8wsVUoo
16/12/25 21:56:11.66 O010A8Dr.net


754:¥ ◆2VB8wsVUoo
16/12/25 21:56:28.97 O010A8Dr.net


755:¥ ◆2VB8wsVUoo
16/12/25 21:56:45.88 O010A8Dr.net


756:¥ ◆2VB8wsVUoo
16/12/25 21:57:02.86 O010A8Dr.net


757:¥ ◆2VB8wsVUoo
16/12/25 21:57:19.96 O010A8Dr.net


758:¥ ◆2VB8wsVUoo
16/12/25 21:57:37.48 O010A8Dr.net


759:¥ ◆2VB8wsVUoo
16/12/25 21:57:54.95 O010A8Dr.net


760:¥ ◆2VB8wsVUoo
16/12/25 21:58:16.48 O010A8Dr.net


761:¥ ◆2VB8wsVUoo
16/12/25 21:58:39.33 O010A8Dr.net


762:132人目の素数さん
16/12/25 23:26:37.09 8UlWZLhJ.net
初耳学で掛け算の順序、9.0か9か問題やってたね。文章題の掛け算の順序はなかったけど。
フィールズ賞受賞の森氏にインタビューしてて、基本、どっちでもいいじゃんというものだった。

763:¥ ◆2VB8wsVUoo
16/12/25 23:36:04.56 O010A8Dr.net


764:132人目の素数さん
16/12/26 00:01:54.64 YO7YemnX.net
>>747
森ほどの人を出すまでもなく、それが普通に
数学の好きな人のテイストなんだけど、
問題は算数が数学ではないこと。
数学でなくていいのか、という持ってきかたは、
求道的な算数道の人には伝わらないからなあ。

765:¥ ◆2VB8wsVUoo
16/12/26 00:04:13.20 P7KkK7Ue.net


766:132人目の素数さん
16/12/26 02:21:01.62 hebK4zSY.net
順序不問にしたらそれだけで数学なのか?
常に本当の数学であり続ける必要は無いのか?

767:132人目の素数さん
16/12/26 02:22:56.12 3VwE55qT.net
ゆとりから急に厳しくなったんだね
優秀な大人になるのかもね

768:¥ ◆2VB8wsVUoo
16/12/26 03:34:59.54 P7KkK7Ue.net


769:¥ ◆2VB8wsVUoo
16/12/26 04:08:33.86 P7KkK7Ue.net


770:¥ ◆2VB8wsVUoo
16/12/26 04:08:52.89 P7KkK7Ue.net


771:¥ ◆2VB8wsVUoo
16/12/26 04:09:09.79 P7KkK7Ue.net


772:¥ ◆2VB8wsVUoo
16/12/26 04:09:27.33 P7KkK7Ue.net


773:¥ ◆2VB8wsVUoo
16/12/26 04:09:44.43 P7KkK7Ue.net


774:¥ ◆2VB8wsVUoo
16/12/26 04:10:01.78 P7KkK7Ue.net


775:¥ ◆2VB8wsVUoo
16/12/26 04:10:18.73 P7KkK7Ue.net


776:¥ ◆2VB8wsVUoo
16/12/26 04:10:35.10 P7KkK7Ue.net


777:¥ ◆2VB8wsVUoo
16/12/26 04:10:53.37 P7KkK7Ue.net


778:132人目の素数さん
16/12/26 11:37:44.87 DFU5ISkZ.net
>>716
五万円の風俗に三回行きました
5×3
風俗に三回行きました各五万円でした
3×5

779:132人目の素数さん
16/12/26 11:41:46.76 imAhD9gU.net
三回行きました。五万円の風俗に。

780:132人目の素数さん
16/12/26 11:46:24.07 imAhD9gU.net
おっさん「よお、今月何回風俗いった?」
おれ「三回だよ」
おっさん「いくら使った?」
おれ「15万」
おっさん「おいおい。高いな」
おれ「いや、一回五万だよ。三回とも」
会話的にはこんな感じですか?

781:132人目の素数さん
16/12/26 12:20:50.80 1+zDpADD.net
5×3は5万+5万+5万ってことだから15万になるのがわかりやすいが,
3×5だと一見3回+3回+3回+3回+3回だからなぜ15回ではなく15万
なのかが理解しづらい. 距離を時間で割ると速さになるってこと
すらなかなか理解しない奴らなんだからこれをちゃんと説明する
のはめんどい. 3回×5万=3万/1万×5万で理解するとは思えん.

782:¥ ◆2VB8wsVUoo
16/12/26 12:41:23.07 P7KkK7Ue.net


783:¥ ◆2VB8wsVUoo
16/12/26 12:41:57.09 P7KkK7Ue.net


784:¥ ◆2VB8wsVUoo
16/12/26 12:42:18.81 P7KkK7Ue.net


785:¥ ◆2VB8wsVUoo
16/12/26 12:42:38.39 P7KkK7Ue.net


786:¥ ◆2VB8wsVUoo
16/12/26 12:42:59.29 P7KkK7Ue.net


787:¥ ◆2VB8wsVUoo
16/12/26 12:43:17.97 P7KkK7Ue.net


788:¥ ◆2VB8wsVUoo
16/12/26 12:43:40.82 P7KkK7Ue.net


789:¥ ◆2VB8wsVUoo
16/12/26 12:44:02.22 P7KkK7Ue.net


790:¥ ◆2VB8wsVUoo
16/12/26 12:44:22.54 P7KkK7Ue.net


791:¥ ◆2VB8wsVUoo
16/12/26 12:44:42.06 P7KkK7Ue.net


792:132人目の素数さん
16/12/26 23:52:14.15 Jbm1jEyj.net
1回に支払い5万円を3回だと、5×3じゃなく、30000×5と書かないと不正解なんてのもありそうだね。

793:132人目の素数さん
16/12/27 01:54:33.71 4vYVa6Ek.net
>>749
> 数学でなくていいのか、という持ってきかたは、
> 求道的な算数道の人には伝わらないからなあ。
自分の頭で考えられない馬鹿な連中は直ぐに××道って作りたがる
そして合理性の欠落した精神主義に浸り、その精神主義であることが高尚だと勘違いして自尊心を満足させる
そして××道が少しでも社会的に力を持つ集団(例えば学校においては教師は権力者)と関わると
その精神主義的な××道を愚かな者たちに広く広めねばという布教への使命感を生み出し
集団主義や権威主義と合体して更に厄介な代物となる
「算数道」という君の表現はこの問題の本質を突いた素晴らしい指摘だね!

794:132人目の素数さん
16/12/27 17:08:36.96 clJCfJWh.net
A 5万円の風俗3回
B 3万円の風俗5回
それぞれ合計を求める式を書き、A、Bを不等号で表しなさい

795:132人目の素数さん
16/12/27 18:56:59.76 ww42pVF2.net
フィールズ賞取った人は頭が良すぎますから、可換性を仮定しない限り必ずしも交換可能とは限らない、という大前提があるということを理解できないもしくはわからない人がいる、ということを理解できないだけなんですよ
掛け算に順序はない、と言ってる人の何割が、そもそも掛け算や演算に順番というものを考えることができる、ということを理解しているんでしょうね

796:¥ ◆2VB8wsVUoo
16/12/27 22:32:26.61 iZPD86tj.net


797:¥ ◆2VB8wsVUoo
16/12/27 22:32:41.93 iZPD86tj.net


798:¥ ◆2VB8wsVUoo
16/12/27 22:32:58.14 iZPD86tj.net


799:¥ ◆2VB8wsVUoo
16/12/27 22:33:13.20 iZPD86tj.net


800:¥ ◆2VB8wsVUoo
16/12/27 22:33:27.96 iZPD86tj.net


801:¥ ◆2VB8wsVUoo
16/12/27 22:33:42.45 iZPD86tj.net


802:¥ ◆2VB8wsVUoo
16/12/27 22:33:59.84 iZPD86tj.net


803:¥ ◆2VB8wsVUoo
16/12/27 22:34:15.83 iZPD86tj.net


804:¥ ◆2VB8wsVUoo
16/12/27 22:34:32.38 iZPD86tj.net


805:¥ ◆2VB8wsVUoo
16/12/27 22:34:48.48 iZPD86tj.net


806:132人目の素数さん
16/12/28 02:37:02.74 QCf7LKb2.net
>>779
合計金額(A)=合計金額(B).
金額以外の比較を持ち出そうってんなら、
効用関数を提示してからだな。

807:132人目の素数さん
16/12/29 06:06:08.83 GKPmK689.net
積分定数「(ひとつ分)×(いくつ分)の順序で考える人は、順列をどう考えていたのか?
ABCDの並べ替えを考える時、あくまで、(ひとつ分)×(いくつ)の形にするなら、((1×2)×3)×4とでもなるのでしょう。
でも4×3×2×1だから、(ひとつ分)×(いくつ)とは逆の順序になっています。」
バカだね、こいつ。「通り」は単位じゃねえよ。
「通り」が単位なら、4(通り)×3(通り)×2(通り)×1(通り)=24(通り^4)になるじゃねえか。
そもそも順列を4×3×2×1とかくのは、この順序で考えなければならないことを意味するので、
順序を自由にしてはいけない例になってるじゃねえか。
@sekibunnteisuuみたいなアホが多いね、この世界は。

808:132人目の素数さん
16/12/29 09:19:34.59 yOykI4da.net
まあ、頭の悪い奴に授業のレベル合わせないとならないからな。

809:132人目の素数さん
16/12/29 11:04:59.87 fIMdGX71.net
バカな人は順番に順序があることがわからないから、逆でも丸にするべきだってことですね
確かに一理あるかもしれませんね

810:132人目の素数さん
16/12/29 17:24:06.17 4yy6AVYP.net
>>792
世の中には単位と助数詞の違いもわからない人もいるのですね、この世界は。

811:132人目の素数さん
16/12/29 22:02:23.12 WWsQTslY.net
> ABCDの並べ替えを考える時、あくまで、(ひとつ分)×(いくつ)の形にするなら、((1×2)×3)×4とでもなるのでしょう。
これって何をひとつ分、いくつ分にしているかだけの問題だよね。[ABCD]という4つのものがあります。
ひとつを選ぶと残りは3つですね。例えばAを選んだら、[BCD]。その3つ分に対して、A~Dと4つずつあるわけです。
↑4つずつが、
[A]→[BCD]┓
[B]→[ACD]┣3つ分ある
[C]→[ABD]┃
[D]→[ABC]┛
……[???]に対して、さらに1つ選ぶのも同様にできて、1つになるまでの繰り返しになる。
もしこれが「無理な考え方だ」と思えるなら、1×2×3×4が(ひとつ分)×(いくつ分)の形と思うことにも無理がある。
なぜか。まずA~Dから2つ選ぶ場合を考えてみよう。最初に4つの選択肢があり、次に3つの選択肢になるね。
これは4×3の平面アレイ図で描ける。3つまで選ぶとどうか。立体アレイ図にするしかない。
幸い3つ目まで選べば残りは1つなんで立体アレイ図でかけ算として理解することができる。
でも、A~Eと1つ増えたらどうか。4次元アレイ図になるよね。もう視覚的に理解するのは不可能になる。
(ひとつ分)×(いくつ分)なんざ、アレイ図までの概念だ。そして2項演算の情報までしか対応できない。
自然数が小数、分数となるなら面積図だな。3項の乗法だと立体的になる。自然数だろうが小数だろうが、ね。
順列みたいに多項の乗法(と除法の組み合わせ)ともなると、もう代数的に仕組みを考えるしかない。
そんなものに、乗法入門の(ひとつ分)×(いくつ分)をいつまでも適用しようってのがね、愚かなわけだ。
似非自由派らしいよね、教えるための便宜的方法を、適用限界を超えて用いて非難するのってさw

812:132人目の素数さん
16/12/29 22:45:51.98 gbJcAA91.net
(ひとつ分)×(いくつ分)は日常場面でやたら使えるけど、常に乗法がそれで完結する訳ではないからな。

813:132人目の素数さん
16/12/30 06:30:09.81 zWhKPtWl.net
>>795
単位がついている時は順序はどうでもよく、
助数詞のときは4×3×2×1という順序があると言ってる@sekibunnteisuuはアホですよね。
彼は矛盾を指摘する取り巻き連中が全くいないのも困ったものですよね。
ま、彼の取り巻きも変な連中ばかりですからしょうがないですかね。

814:132人目の素数さん
16/12/30 06:50:54.50 yW7cnmIS.net
単位を分かってないバカがまた現れたか。
速度も距離もキロだから同じと考えてるのが。
順列の2段目移行は条件付きだから
単位は条件で割ってやらないといけない。
4通りの中の1通りに付き3通り
その中の1通りに付き2通り
その中の1通りに付き1通り
となると4x3x


815:2x1の3と2と1は無単位だ。



816:132人目の素数さん
16/12/30 07:09:45.75 zWhKPtWl.net
>>799
それで結局、4x3x2x1に順序はあるの?それとも順序は自由でいいの?

817:132人目の素数さん
16/12/30 08:00:58.98 yW7cnmIS.net
>>800
もちろん計算順序は自由。
順列組み合わせの計算に使われる階乗の計算式をΣで表現すると
1からnまで小さい方から掛け合わせて行く形になる。
それで良いのである。

818:132人目の素数さん
16/12/30 14:28:44.04 oi78UkAT.net
>>733
一個500円のところを今ならなんと600円で二個買えちゃいます、みたいな宣伝

819:132人目の素数さん
17/01/04 10:09:06.25 HRBwMUiS.net
3.94+5.14=9.1
sssp://o.8ch.net/mfoa.png

820:132人目の素数さん
17/01/04 15:41:40.46 sQASeWSH.net
インド式とかゴースト式とか
計算の仕方の順序は様々なんですけど

821:132人目の素数さん
17/01/04 17:13:49.81 cp33WraO.net
>>801
ABCDの並べ替えを考える時、4x3x2x1とせずに1x2x3x4とやる奴はバカだろ。

822:132人目の素数さん
17/01/04 18:03:42.85 HRBwMUiS.net
3.90+5.10=9.0 正解

823:132人目の素数さん
17/01/04 18:49:38.62 cp33WraO.net
10人から4人選んで並べる並べ方は、どう考えても10×9×8×7だよな。
これを7×8×9×10とかく生徒がいたら、「順序はどうでもいいよ」と言うのかな?
それはおかしな教育だね。

824:132人目の素数さん
17/01/04 19:07:18.98 DoqxgIDr.net
答えさえ合ってればいいなら×1は要らないよね
まぁ有ったらダメってこともないけど

825:132人目の素数さん
17/01/04 19:18:00.64 WwCqroMB.net
5×4×3×2×1を
(5×2)×(4×3)×1と計算できないのが
ゆとりなんだな

826:132人目の素数さん
17/01/04 19:34:41.89 LC7uKm2P.net
逆転の発想

827:132人目の素数さん
17/01/04 20:07:20.64 cp33WraO.net
>>809
一旦5×4×3×2×1と書いた後には色々な計算方法があると思う。
(5×4)×(3×2)×1とか(5×2)×(4×3)×1とかね。
でも最初から1×2×3×4×5とかくのはおかしいし、順序はどうでもいいと言うのもおかしい。

828:132人目の素数さん
17/01/04 20:29:04.04 sgR+y8bf.net
階乗はn!=Π[k=1…n]kだろ?
それって5!=1×2×3×4×5ってことじゃん。
5×4×3×2×1では逆。

829:132人目の素数さん
17/01/04 20:51:26.58 cp33WraO.net
>>812
まず階乗の公式ありきでしか考えられない硬直化した人だな。
なぜn人を並べる並べ方がn!になるかを基本に戻って考えてみたらどうかな?
あなたの考え方は本末転倒だな。
こういう硬直化した人はこまったものだ。

830:132人目の素数さん
17/01/04 20:56:50.90 0eM7CBFb.net
>>813
それって、5!と書く前に一旦
5×4×3×2×1と書かないて
順番が違うからバツって意見?
それも何だかなあ

831:132人目の素数さん
17/01/04 20:59:30.07 cp33WraO.net
>>814
15人から4人選んで並べる並べ方を聞かれたとき、
あなたはどういう式を立てるのかな?

832:132人目の素数さん
17/01/04 21:33:46.20 7FCSWsqE.net
   弋彡´" ̄ ̄'彳`z;:::::::::::::::::::::::::::::::::::::::::::::::::::::ヽ
    |          `!::::::::::::::::::::::::::::::::::::::::::::::::::::::!
    '          八:::::::::::::::::::::::::::::::::::::::::::::::::::::!
    .!            \::::::::::::::::::::::::__::::::::::::::::::::!
    }ミr、 f三三ニ=     ヽ:::::::::::::::/ r≠ヽ::::::::::::::!
    ヽ_ ! :. __       ',:::::::::/ 夕了! i:::::::::::ノ
     `"!  `  ̄         ヽ:::/ { 叨 丿::::::z'
      ノ              乂    /i:::::::::ソ
     /                      i:::::::::!
    (  r=、)                   ,::::ノ
     `T                      乂
     <__ _                  ∧
       .(`´: : :フ                 ∧
        `下                   .∧__
         i       ,: ´           _ >: : : : ヽ_
          'ー ― ‐´           _/: : : : : : : : :z、_
               .\         z: : : : : : : : : : : : : : : :.\
                _ >,     ,彳: : : : : : : : : : : : : : : : : : : :\
              _ ノ: :{__ /: : : : : : : : : : : : : : : : : : : : : : : : :\
             /: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :.\

833:132人目の素数さん
17/01/04 21:49:44.13 cp33WraO.net
「順序は自由でなければならない」というドグマに固執するあまり
逆に不自然な考え方を固持しようとしているのは滑稽だよね。

834:132人目の素数さん
17/01/04 22:01:26.41 0eM7CBFb.net
>>815
15P4は15!/(15-4)!だから、
15!のとこで同じ問題が現れるな。

835:132人目の素数さん
17/01/04 22:22:18.24 4vt3+qg/.net
>>817
逆だろう
意味のある順序は一通りだと主張するが故に
Nの階乗N!をΠ_{i=1,N}Nでは表せなくなるという喜劇を
順序固定派の君が>>813,>>815でピエロとして演じているわけだ
N! は 1×2×・・・×(N-1)×N でも N×(N-1)×・・・×2×1 でも
どちらでも良いんだよ
その時々の文脈に応じて考えやすいほうを使えば良い
その自由度が掛け算にはある、というのが順序自由派の主張であり
森先生の様な大数学者が心から愛し数学を発展させる原動力となってきた
数学の持つ自由さの最も初歩的な一端でもあるのだ
小学校の算数は数学という秩序がありながら豊かで自由なや豊かな世界への文字通りの第一歩なのだよ
その自由で豊かな数学の世界への入門を人為的に歪めようとする輩は一種の知的、否、痴的テロリストだ
君のような掛け算順序固定派は一種のカルト教団であり、その信徒としての痴的テロリストに過ぎない
だから部外者から見れば気が狂ってるとしか思えない可笑しな教義を平気で他人に強要し
本物の武装テロリストが平気で将来ある筈の子供達を人間爆弾として使用する様に児童に対して平気で痴的に抑圧するのだ

836:132人目の素数さん
17/01/04 22:43:45.77 cp33WraO.net
>>818
相変わらず公式を持ち出さないと解けない硬直人間だな。
15人から4人選んで並べる並べ方は、小学生でもできるぜ。
勿論15P4なんて使わずに15×14×13×12と言う自然な考え方を用いてだ。
>>819
抽象化されたN! なら、 1×2×・・・×(N-1)×N でも N×(N-1)×・・・×2×1 でも
どちらでも良いは、
あなたは15人から4人選んで並べる並べ方を聞かれたとき、
あなたはどういう式を立てるのかな?
順序自由派は公式を使う方法しかないようだな。
おまえらこそがカルト教団だよ。

837:132人目の素数さん
17/01/04 22:45:20.65 cp33WraO.net
ID:4vt3+qg/は教師にいじめられたトラウマでもあるんだろうな。
可哀想に。

838:132人目の素数さん
17/01/05 00:12:13.38 KM4PO9xt.net
>>820
君の場合は掛け算の順番まで固定しないと解けない訳だが(爆笑

839:132人目の素数さん
17/01/05 01:15:17.56 AsovTHD3.net
>>819
いやいや、教条主義者が算数を歪めているのではなく、
そもそも算数自体が教条主義的であって
数学とは全く異なる氏素性のものなのだよ。
算数は、リテラシーi.e.読み書き算盤の一部なのだから、
「先生が言ったとおりの作業をしなさい」というのが
その本体。むしろ自分では考えないことが推奨される。
数学との関連性は、扱う対象が似ているという副次的なもの。
数学という秩序がありながら自由で豊かな世界へ向かうには、
初等的にせよ高等的にせよ、数学の気風を知って入門する
必要があり、それは算数とは真逆の世界なのだ。
とりあえず小学生は、指導者であると同時に採点者である
先生に従っておきなさい。算数は算数でしかないのだから、
考えても始まらない。考える自由が欲しかったら、大人になって
数学を学べばいい。高校まで進めば、数学教師も理系だから、
あまり無茶な服従は要求しなくなる。自由は我


840:慢の後にある。



841:132人目の素数さん
17/01/05 03:04:56.72 KM4PO9xt.net
>>823
一口に我慢と言ってもする意味のある(学ぶもののある)我慢とする意味のない(学ぶもののない無価値な)我慢とがあるって知らないの?
我慢と言えば何でも正当化できると思ったら大きな間違い
我慢が有意義か無価値かを区別せず他人に我慢の一言で強いる君みたいな人間は単なるサディストかサイコパス
掛け算の順番固定など無価値な我慢、まあ君みたいな石頭には必要なのかも知れないがほとんどの子供には無価値な我慢
君みたいな愚かで頭の悪い人間を救うためにすべての児童に我慢させるなど論外だね
能力別学級にして君みたいな融通の利かない愚鈍な石頭だけ集めて掛け算の順番を決めて教えれば宜しい
そういうレベルの強制が必要なほど愚鈍で石頭の子供は全児童の中で極く一部だよ
君のような極く一部の愚鈍な子を救済するために他の全ての圧倒的多数の子供に犠牲を強いるのは社会にとっては重大な損失だ

842:132人目の素数さん
17/01/05 03:14:49.44 R2jfYujX.net
>>824
実際は逆なんだけどw
実際に小2の集団に接してみろよ。リアルに驚くよ。こんな程度なのかって。

843:132人目の素数さん
17/01/05 03:35:27.41 0ymDC4oK.net
>>824
日本でだけ反核運動してる左翼みたいだなwww
掛け算の順序固定が気に入らないならまず米国や英国へ言ってくれよ

844:132人目の素数さん
17/01/05 04:52:39.93 TumHRsYq.net
抽象的な記号操作の考えが可能となる年齢は15才から20才頃なので、小学生に
数学的な問題を理解させることは生物学的に困難といえます。

それを理解した上で能力ある人材を見つけ出す環境が整っていればよいのですが
給食費すら払えない家庭環境が生じている現在、優先されるべきは能力別
指導ではなく別なのではないのかとも思います。

子供には遊びを通じた体験が良いでしょう。数独やパズルや算数カードゲームの
ようなものから、算数計算に関わる使い方を機械を使って解くという発想を経験させる
ことも大切ですから電卓やコンピュータに触れることを第一に考える授業もよく、
そして見た目でわかりやすい幾何学や立体など扱い、そこから帰結する代数計算
などを学ぶことも良いでしょう。古いですがそろばんも良いと思います。

我慢という表現は適切とは思えませんが、簡単な計算をさせてそれを繰り返して覚える
という行為は大切と思います。
ただある年齢以上になって自由な発想を抑圧すると数学的才能は伸びないと思います。
そういう意味では受験目的の数学は本来の数学ではないということは本当だと思います。
この根本的問題は教育制度の改善が必要となるでしょう。
戦前の旧制高校などの教育制度を歪めた結果が現在の教育制度なのですから。

845:132人目の素数さん
17/01/05 06:40:37.45 Hk/LitEg.net
>>822
15人から4人選んで並べる並べ方を15×14×13×12として解くと
「掛け算の順番まで固定しないと解けない」と言ってるのは
順序自由のカルトの侵された考えだね。
順序自由派のほうが、実は洗脳されているようだね。

846:132人目の素数さん
17/01/05 06:56:56.70 AsovTHD3.net
>>827
>抽象的な記号操作の考えが可能となる年齢は15才から20才頃
アホかい。数学に適する年齢は、17歳をピークに7歳から25歳まで。
15歳まで禁止してて、どうするの?

847:132人目の素数さん
17/01/05 08:41:29.97 Fsdm35/W.net
特殊な学者はどうでもいいんだよ。
パンピーの教育については
小学校2年までは国語算数の基礎の徹底した詰�


848:゚込みと 息抜きの理科、道徳と一体化した形での社会、これでいい。 算数は四則演算の計算能力を徹底して叩き込む。 文章問題は基礎的な国語力が身についた後でいい。



849:132人目の素数さん
17/01/05 09:46:09.98 HLve2vqJ.net
算数でなく体育の話をしているのかな?
しかも、精神論を中心に。
筋トレもいいが、たまに頭も使ってみないと
馬鹿になるぞ。

850:132人目の素数さん
17/01/05 10:55:47.23 KLwqBNO0.net
スポーツをする前にはしっかりと準備運動をしましょう

851:132人目の素数さん
17/01/05 11:25:45.97 HLve2vqJ.net
卒業まで筋トレしかさせなかったら、
退部者が大量に出ない?

852:132人目の素数さん
17/01/05 15:08:35.41 KLwqBNO0.net
させなかったとしたらね
誰かそんな目に遭ったの?

853:132人目の素数さん
17/01/05 15:14:14.25 HLve2vqJ.net
お前、結果出したけど、筋トレ以外のことしたから
減点な!と

854:132人目の素数さん
17/01/05 16:08:28.80 KLwqBNO0.net
ん?
卒業まで筋トレのみの話じゃねーの?

855:132人目の素数さん
17/01/05 16:11:45.55 cx72Iurc.net
「15人から4人選んで並べる並べ方(以下Pと略記する)」は
「15人から4人選んだときの並べる並べ方(以下Qと略記する)」を省略した表現と解釈出来る。
並べられる側から見るとQは
「15人から4人選んだときの並べられる並ベ方(以下Rと略記する)」という解釈になる。
第三者からすると、RはQをいい換えたに過ぎない。RはPをいい換えたに過ぎない。
PをQと解釈すると、確かに並べる側から見て 15×14×13×12 と式を立てるのが自然である。
その一方で、PをRと解釈すると、並べられる側から見て (15-4)+1=12 人が余って
並べされないことになるから、並べられる側の人を数が小さい方から数えて行き
12×13×14×15 と式を立てるのが自然である。
第三者的には 15×14×13×12 と 12×13×14×15 は同じ式になるわな。
(15-0)×(15-1)×(15-2)×(15-3) か {(15-4)+1}×{(15-4)+2}×{((15-4)+3}×{(15-4)+4}
の2つならどっちでもいいわな。15×14×13×12 か 12×13×14×15 ならどっちでもいいわな。
第三者的には、問題文に出て来る代物が能動的か受動的か
という双対関係があるだけの話で、数学としてはどっちでもいい。
RをPのように省略した表現は「15人から4人選んだ並べられる並ベ方」とでもなるのだろう。

856:132人目の素数さん
17/01/05 16:18:30.95 cx72Iurc.net
5皿ある。3こずつ林檎がのっている。で5×3は駄目!?
も、結局問題文に出て来る数える(数えられる)代物が能動的か受動的か
という双対関係があるだけの話で、数学としてはどっちでもいい。
…個の「個」は助数詞で物理量ではないし、数学的には単なる言葉遊び。

857:132人目の素数さん
17/01/05 16:25:25.42 Hk/LitEg.net
>>837 並べられる側から見て (15-4)+1=12 人が余って

余るのは11人だけどな。どこから12という数が来る?お前、頭が不自由か?

858:132人目の素数さん
17/01/05 16:57:30.41 cx72Iurc.net
>>839
>>837の「(15-4)+1=12 人」は「15-4=11 人」の間違いだ。
こんな間違いはすぐに気付いた。

859:132人目の素数さん
17/01/05 17:09:53.32 Hk/LitEg.net
>>837 並べられる側の人を数が小さい方から数えて行き12×13×14×15 と式を立てるのが自然である。

全然自然ではなく、無理があるな。
答えから逆に意味づけしようとしているだけ。
合理性が全くない。

860:132人目の素数さん
17/01/05 17:11:58.60 Hk/LitEg.net
>>837
12×13×14×15の最初の数の12は、どこから来る数なのか?

861:132人目の素数さん
17/01/05 17:36:30.40 cx72Iurc.net
>>841-842
>>837
>並べられる側から見て 15-4=11 人が余って並べされないことになるから、
>並べられる側の人を数が小さい方から数えて行き
>12×13×14×15 と式を立てるのが自然である。
と書いてあるだろ。
並べられる側から見て 15-4=11 人が余って並べされないことになる
ということは、並べられる側の人からすると、並べられた側から見て
並べられた人を数えるとき小さい方から (15-4)+1=12 からはじめて
大きくして行って15まで数を増やすように
{(15-4)+1}×{(15-4)+2}×{((15-4)+3}×{(15-4)+4} 人
と数えて行くことになる。15×14×13×12 (人) という式の立て方も、
並べる側から見た式の立て方だから、正確には
(15-0)×(15-1)×(15-2)×(15-3) (人) と式を立てるのが正しい。

862:132人目の素数さん
17/01/05 17:44:34.15 cx72Iurc.net
>>841-842
>>843の下から3、4行目では
>{(15-4)+1}×{(15-4)+2}×{((15-4)+3}×{(15-4)+4} 人
>と「式を立てる」ことになる。
だな。

863:132人目の素数さん
17/01/05 17:52:07.96 Hk/LitEg.net
>>843 並べられた人を数えるとき小さい方から (15-4)+1=12 からはじめて大きくして行って15まで数を増やすように

言ってることが支離滅裂だな。
積の法則も無視して、無理やり12×13×14×15を作ろうとしているにすぎない。
数学的合理性は全くない。ただ�


864:フ辻褄あわせを強引にやってるだけ。



865:132人目の素数さん
17/01/05 17:54:17.51 Hk/LitEg.net
843はインチキ数学のいい見本例だな。

866:132人目の素数さん
17/01/05 17:56:25.06 cx72Iurc.net
>>841-842
>>843の「15-4=11 人が余って並べされないことになる」も
「15-4=11 人が余って並べられないことになる」だな。
文章として変だな。

867:132人目の素数さん
17/01/05 17:59:04.98 Hk/LitEg.net
>>847
文章というよりも、お前自体が完全におかしい。

868:132人目の素数さん
17/01/05 18:08:16.28 cx72Iurc.net
>>845-846、>>848
物理か組合せ論的な考え方が出来ないと、並べられる、並べられるとかの
能動的か受動的かの双対関係に基づくような考え方は分からんだろうな。
何いっているか趣旨は分かんだろう。

869:132人目の素数さん
17/01/05 18:16:09.16 cx72Iurc.net
>>845-846、>>848
>>849の「並べられる、並べられる」は「並べる、並べられる」の間違いだな。

870:132人目の素数さん
17/01/05 18:20:23.25 Hk/LitEg.net
>>849 物理か組合せ論的な考え方

物理も組合せ論的な考え方も関係ないな。
並べる、並べられる、もカウントの仕方は同じ。
双対関係では全くない。
お前の言ってることは、ただの錯乱。

871:132人目の素数さん
17/01/05 18:21:13.81 YL29Bx/e.net
誤答おじさんってやつですか?

872:132人目の素数さん
17/01/05 18:41:12.61 cx72Iurc.net
>>851
物理では、何を基準にして考えるかに細心の気を払うことは日常茶飯事である。
組合せ論も、数え上げて行くことについては細心の気を払う。
物理的考え方か組合せ論的な考え方が出来れば、趣旨は分かる筈である。

873:132人目の素数さん
17/01/05 18:43:17.51 HLve2vqJ.net
算数おじさんじゃないかな?
強権不快に「こう教えてます」を
正当化するために、いろいろやるから
話が長い。もってまわった、というかねえ。

874:132人目の素数さん
17/01/05 19:15:51.87 pO3cyv+1.net
>>807
10人から2人選んで並べる並べ方を樹形図で描くと
それぞれ1個あたり枝が9本ある点が10個になって9*10
多分そんなストーリー

875:132人目の素数さん
17/01/05 21:15:24.58 R2jfYujX.net
>>838
結果的に数学的には整数の交換則が成りっているからこその発言だなw
小学生低学年にはそれがなりたつかわからんし

876:132人目の素数さん
17/01/05 23:43:16.55 AsovTHD3.net
>>856
それを教えるのが、教育じゃないんかね。
生徒が「九九表って対称だよね」と思いながら
小学生故に証明の手段を持たないとき、
放置するってのはどんなもんかな?

877:132人目の素数さん
17/01/05 23:44:19.48 YL29Bx/e.net
>>857
あなたは証明できるんですね?
どうやって掛け算の可換性を証明するんですか?

878:132人目の素数さん
17/01/05 23:44:22.77 AsovTHD3.net
「ザマミロ、順序守れ」とか思ってんのかな?

879:132人目の素数さん
17/01/05 23:46:30.52 R2jfYujX.net
>>857
乗法の交換則なんて大学の数学科だって証明しないで公理で扱うだろw
分配則の成立を仮定すれば直ぐに証明できるけど、何やら分配則に押しやっている感じ。

880:132人目の素数さん
17/01/05 23:51:45.68 YL29Bx/e.net
>>860
証明できます
分配法則も交換法則の仮定も必要とせずに

881:132人目の素数さん
17/01/06 00:24:40.27 Cjs1Od/Y.net
じゃ、頼むよ。できれば実数で頼む。

882:132人目の素数さん
17/01/06 00:30:23.13 4GmvN9mn.net
証明っぽい体裁のものが書けるか
「自明」の一語で終わるかは、
有理数の乗法をどう定義した文脈での
証明かしだいだな。
好きにやっていいなら、公理にしとく
ほうの定義が好きだが、
公理にしろペアノ式にしろペアノもどきにしろ
小学生に証明を教えようというのは賛成できない。
必要なのは、「よく気づいたね」と言って
天下りに交換法則を認めてやることだ。
有理数とはどんな性質をもつ系かを
きちんと教えてあげること。

883:132人目の素数さん
17/01/06 00:48:09.55 Fnra+nsB.net
>>863
その通りですが、交換法則が成り立つからといって掛け算に順番はないことにはならないですよね

884:132人目の素数さん
17/01/06 01:01:32.20 Cjs1Od/Y.net
>>863
それは天下り的じゃないよね。
子供に気づかせるのは重要で、まあそこで成り立ったことは確認するって事で、
更に多数回の計算による確認を省略するんだけどね。

でも、スレの本質とは別に「交換則のしっかりとした証明」が提示されたらそれはそれで良いと思うから
聞いているわけだが。

885:132人目の素数さん
17/01/06 01:17:21.84 NRhDJat2.net
>>865
それを言うなら、本人が気づいているものを
まだ授業で「確認」していないといって
規制するのはオカシイだろ。一貫してる?

886:132人目の素数さん
17/01/06 01:25:51.37 Cjs1Od/Y.net
>>866
一人が気づいても、全員のモノにならんとダメなんじゃないの?
クラスが一人だけの田舎の学校ならそういう授業もあり得るかも知れないけどさ。

また、教師はえこひいきできんし、誰がどこまで「気づいているか」ってのを一々把握しなきゃ
ならんとしたらとてつもない労力だと思わないのかい?

887:132人目の素数さん
17/01/06 01:49:41.76 Fnra+nsB.net
>>866
立式は式自体の意味が大事なんですよ
証明問題解くのに全部自明、で終わらせたらダメですよね
立式にそういう意味を求められている以上、掛け算が一つ分×いくつ分と定義されている以上、どっちでも答えは同じだからどっちでもいいんだ、はダメなんです

888:132人目の素数さん
17/01/06 01:49:41.83 ZDW6idB3.net
>>860
>乗法の交換則なんて大学の数学科だって証明しないで公理で扱うだろw
大学の講義で扱う範囲にも限界があるし、講義なんてあてにならん。
習わないなら、自分で勉強するんだよ。それが正しい学習の態度だ。
昔は講義でも扱っていたそうだけどな。

889:132人目の素数さん
17/01/06 01:52:03.53 Cjs1Od/Y.net
>>869
>昔は講義でも扱っていたそうだけどな。

分配則あたりを公理にするって手法でしょ?多分。
まあ、乗法の素朴な定義が分配則そのものだという話もあるが、実数の場合はどうなんだろうね。

890:132人目の素数さん
17/01/06 01:56:34.60 Fnra+nsB.net
>>870
ペアノの公理で自然数を定義して、自然数の組みで整数を定義して、整数の組みで有理数を定義して、有理数の集合で実数を定義する
こういう風に段階を踏んでいけばちゃんと証明することは可能です

数の構成とかでググればすぐ出て来ます

891:132人目の素数さん
17/01/06 02:03:40.92 Cjs1Od/Y.net
>>871
あったあった。懐かしいね。
ざっと見ると確かに余分な公理はない気がするなあ。ありがとう。

892:132人目の素数さん
17/01/06 02:05:58.16 Fnra+nsB.net
7分
知らなかったくせによく言いますね

893:132人目の素数さん
17/01/06 02:10:30.10 ZDW6idB3.net
>>870
教育学部の数学科の事情は知らないが、
昔は理学部の数学科では実数の場合も講義で扱っていた。

894:132人目の素数さん
17/01/06 02:15:15.32 Cjs1Od/Y.net
>>873
いや、知らなかったから聞いたのだし、それを参考にして実際にざっと見て、感謝の意を伝えたのだが…
ただ、本当に「ざっと見た」だけだからなw

895:132人目の素数さん
17/01/06 06:17:43.57 jmBM09Au.net
高木貞治も算術ではかけ算の順序を説いているから
掛け算の順序はあるんだよ。

896:132人目の素数さん
17/01/06 10:27:21.02 M8mGHSma.net
九九くらいは全部覚えろ

897:132人目の素数さん
17/01/06 10:28:25.80 ZDW6idB3.net
出典のない
>高木貞治も算術ではかけ算の順序を説いている
という根拠に欠ける文と、Wikipediaの
>2014年、志村五郎は、『数学をいかに教えるか』のなかで掛け算の順序の章に
>4ページをさき、「結局どちらでもよいのにどちらが正しいかを考えさせるのは
>余計なあるいは無駄なことを考えさせているわけである」と指摘し、
>そんなことはやめるべきであると論じた[46]。
という文とでは、後者の方が信憑性はあるな。
出典を出さず、根拠に欠けることに基づいて
誰それが何某はあるといっているから何某はある
というような判�


898:fは、論理的思考でもなく科学的思考でもない。 高木貞治がかけ算の順序を説いているかどうかは大抵の人は知らないだろう。



899:132人目の素数さん
17/01/06 10:37:50.34 M8mGHSma.net
高木貞治て日本人ちゃうだろ。

900:132人目の素数さん
17/01/06 10:52:32.05 ZDW6idB3.net
高木貞治は岐阜県出身の日本人だが…。

901:132人目の素数さん
17/01/06 13:44:25.19 4GmvN9mn.net
国民栄誉賞までもらったが、国籍は台湾だよ。
本人も、日本の野球人だと言ってたけど。

902:132人目の素数さん
17/01/06 20:09:07.94 jHIZ2a5W.net
最近は「順序こそが大切だ」みたいな書き込みが散見してるように見えるな・・

903:132人目の素数さん
17/01/06 20:34:41.77 jmBM09Au.net
長方形の縦と横のように乗数と被乗数の区別がつきにくいものもあるが
明確に乗数と被乗数の区別がつく場合もある。
その場合は乗数と被乗数の区別をつけるために
敢えて順序をつけようということ。
ある程度掛け算がわかってしまえば順序はどうでもよいが、
小学校低学年では乗数と被乗数の区別をつけさせる必要がある。
小学生では乗数と被乗数の区別がついていない子は、いくらでもいるだろう。
そういう子に安直に丸をつけるのは、いかがなものか。

904:132人目の素数さん
17/01/06 21:42:21.75 NRhDJat2.net
>>882-883
掛け算順序は、掛け算の導入期にはシカタナイ部分もあり、
先生ばかりを責められはしないのだが、教える便宜優先で
それが掛け算の定義であるとか、順序を遵守しない生徒は
掛け算の意味が解っていないとか、荒唐無稽な話が多すぎる。
そういう部分が、算数教育のどうにも好きになれない所だ。
小学生の場合、答案に自分の考えを記述できない国語力の
生徒があることは、残念であるにしても仕方のないことで、
採点者は、説明なくだらだら書きっぱなしにされた数式から
生徒の考えを推定しなければならない。そこの便宜のために
式を見れば考えが判るような式の書き方を算数固有に設定して
それを守った場合にのみ解っているとみなすというやり方は、
先生にとって効率的合理的だ。ただ、それが主に算数指導者の
利益のために恣意的に設定されたルールであるということは、
ある程度理解の進んだ生徒の目には明らかなことなので、
信頼を失ったり嫌悪感を持たれたりする可能性は大きい。
この話題で騒いでいるのは、そういう所から
子供のころの教育不信を引きずっている連中でしょう?
つまらないことだが、正しい評価ではあるよね。

905:132人目の素数さん
17/01/06 22:10:48.30 jHIZ2a5W.net
>>884
そうだね。
便宜的なものであるというのは否めないし、固定さえすれば良いと考えるとか止めて欲しいよね。

906:132人目の素数さん
17/01/06 22:16:24.44 agcabNRt.net
式を書かせるのではなく、考え方を書かせるようにするばいい
そうすれば、2×3だの3×2だの式だけ書いてるようなのはどちらも減点どころか容赦なくバツにできるからな

907:132人目の素数さん
17/01/06 22:25:37.77 NRhDJat2.net
そのためのネックは、国語力の貧困だ。
子供の論理的な思考力は15歳からとか
全てを諦めて放棄するとこから始まってる
文章力の教育で、何を答案に書かせようというのか。

908:132人目の素数さん
17/01/06 22:40:04.41 jHIZ2a5W.net
考え方を書かせるのも悪くはないだろうけど、割としっかりめに書かせないとダメかも。
例えば問題文のコピペの如く5皿に3個ずつだから5×3(又は3×5)という回答案をどう評価するか・・

909:132人目の素数さん
17/01/06 23:15:18.56 Cjs1Od/Y.net
考えを書かせても、結局は何らかのひな形に落とし込む形に低学年はせざるを得ないから、
ここにいる多くの人が嫌うだろう、暗記教育に陥ってしまうのは必定だよw

しかも、算数の授業なのに国のの書き方のような授業に。

910:132人目の素数さん
17/01/06 23:16:35.56 KfPqjb2l.net
>>888
それだと0点だね
5皿に3個ずつをどのように認識したのかを表現しなくちゃダメだよ

911:132人目の素数さん
17/01/06 23:31:35.84 LMlqhxYi.net
考え方を見て採点した結果同じ式でも○×が違ってくると、うちの子が×なのはおかしいと暴れ出すモンペ対策で仕事にならないんだろうなw

912:132人目の素数さん
17/01/06 23:48:50.07 KfPqjb2l.net
学校内で行うテストは返却しなけりゃ解決だな
到達度とか知りたかったら外部模試を受けさせればいいね

913:132人目の素数さん
17/01/07 00:45:04.97 xit6t+S6.net
テストだけでなく、授業もプロの教育産業に外注すれば、
教師も生徒も幸せになる。問題はコストか、、、

914:132人目の素数さん
17/01/07 01:34:28.44 TtSe9l4E.net
そうなっても、今の授業の流れは順序固定で変わらないかと

915:132人目の素数さん
17/01/07 01:38:13.50 MK4hOxRY.net
教師がプロじゃないなら誰がプロなんですか?
教員採用試験にも合格できない塾講師様とかですか?

916:132人目の素数さん
17/01/07 03:02:53.19 urXyTlTk.net
学校教員が教育のプロであったなら、親の収入による
教育の格差は起こらない。実際に起こっているね?
払うものを払わないとそれなりの教育を受けられない
ことの証拠だ。義務教育の存在自体が、素人教員の
温床になっている。

917:132人目の素数さん
17/01/07 03:29:46.56 MK4hOxRY.net
人数や演習時間の問題だと思います
学校という体制そのものに不満があるならまだわかりますけど、塾講師なんて教員採用試験も受からない無能をありがたるのもおかしいと思います

918:132人目の素数さん
17/01/07 03:50:44.42 PIQ2La5g.net
>>893
プロは「わかる」をすっ飛ばして「できる」に偏りすぎてる
学校教員は「できる」よりも「わかる」に時間や労力を割くことができる貴重な存在だよ

919:132人目の素数さん
17/01/07 04:16:17.07 1+XAp80l.net
>>890
ふーん・・まぁ授業での教え方次第かな?
あなたの模範解答は?

920:132人目の素数さん
17/01/07 07:12:19.05 1+XAp80l.net
>>896
各教科のプロを全学校に複数人配置せよということか、凄いねぇ・・
体育とかどうなるんだろうね。ジャンル毎かな?競技毎かな?

ちなみにどうすればプロを名乗って良くなるの?

921:132人目の素数さん
17/01/07 07:27:40.12 9bvv3ACP.net
>>899
問題「5つの皿があります。各々の皿に3個ずつ林檎が乗っています。
林檎は全部で何個ですか?」

解答a)
5つの皿に1個ずつ林檎が乗っていたとしたら林檎の個数は5である
3個ずつ乗っている場合はその3倍になるから、林檎の個数は全部で5×3=15

解答b)
3個の林檎が乗ってる皿が1皿だけだと林檎の個数は3である
これが5皿ある場合はその5倍になるから、林檎の個数は全部で3×5=15

以上の解答は、倍作用を右からかけるものと決めた場合の式になります。
逆に倍作用を左からかけるものと決めた場合には解答a)と解答b)の式は入れ替わります。

922:132人目の素数さん
17/01/07 07:57:59.22 1+XAp80l.net
>>901
それだけ書けてれば上等だろうね。
あとは>>889が指摘しているように雛型の暗記になってないかどうかの判別だけど・・
まぁ雛型化してても書けてるだけマシかとも思えてきたw

923:132人目の素数さん
17/01/07 09:57:11.21 urXyTlTk.net


 ←見よ。5×3(あるいは3×5)

15個

のほうがましな気がしてきた。

924:132人目の素数さん
17/01/07 10:31:45.11 PIQ2La5g.net
じゃあ、こ�


925:ネ出題されたらどのような解答する? 問題「5つのコップがあります。各々のコップに3dLずつ林檎ジュースが入っています。 林檎ジュースは全部で何dLですか?」 問題「50枚の皿があります。各々の皿に30個ずつ林檎が乗っています。 林檎は全部で何個ですか?」 問題「横の長さが5cmの長方形があります。縦の長さは3cmです。 この長方形の面積は何平方センチメートルですか?」



926:132人目の素数さん
17/01/07 11:22:03.92 jQhOEho0.net
>>903
気がしてきたってそれお前が前から主張してるやつじゃねーの?
とりあえずかけ算と思えばアレイ図なり面積図なり書いとけばいいんだから楽なもんだな

927:132人目の素数さん
17/01/07 13:59:02.46 xit6t+S6.net
掛け算を使う理由が「アレイ図で描ける状況だから」
だというのは、適切な判断だと思うがな?
少なくとも、「文中に『づつ』とあったから」よりは
正常に頭を使っている気がする。

928:132人目の素数さん
17/01/07 14:30:54.94 Po3Dxmax.net
なぜアレイ図で書けるのかというのも必要だと思うがな
本当は単なる足し算の問題なのにアレイ図書いてかけ算です
なんて言っちゃう子はダメでしょ

929:132人目の素数さん
17/01/07 14:51:13.17 TtSe9l4E.net
>>906
文章を読んで、それがなぜアレイ図として表せるか判断するスキルが必要だろ。
それを突き詰めて考えると結局は「づつ」などの言葉をキーワードにして判断せざるを得ないわけで。

930:132人目の素数さん
17/01/07 18:26:40.68 ZqSRs0Rb.net
乗数や被乗数の区別がつかず、掛け算の順序もデタラメをかくような子供は
アレイ図で教えたって、「掛け算はよくわからないけど、適当にアレイ図を描いとけば先生は丸をくれる」
と思うだけだよ。
アレイ図が最終兵器みたいに言うカルト信者は本質が見えていない。

931:132人目の素数さん
17/01/07 19:00:01.44 urXyTlTk.net
東大受験AIじゃあるまいし、
そこをキーワードで判定しちゃ
人間として駄目だろ。

リンゴを整頓して置くと全体が見渡し易くて、
整頓のしかたとして四角く並べれば
掛け算が使えるケースだと判る
ってことで良いんじゃないの?
それのどこがいかんのか。

932:132人目の素数さん
17/01/07 19:20:31.74 urXyTlTk.net
>>909
乗数と被乗数が最終兵器も、そこそこカルトだがな。
同じ掛け算でも、どちらが乗数でどちらが被乗数かは
解釈しだいで逆転させられる。リンゴと皿のときは
リンゴを被乗数にすることになってるとかの知識
の山に掛け算理解の本質があるとは思えない。

933:132人目の素数さん
17/01/07 19:24:56.84 MK4hOxRY.net
掛け算習いたての小学2年生の児童に

りんごが2個あります
そこにりんごを3つ加えました
合わせていくつですか?

って問題出したら2×3=6って答えるんですよ
そういう児童が掛け算の順番を本当に理解するとは思えませんけど、やらないよりはマシだとは思いませんか?

934:132人目の素数さん
17/01/07 20:08:02.70 TtSe9l4E.net
>>912
そしてアレイ図をその問題に対して書くよなw

935:132人目の素数さん
17/01/07 20:34:08.09 ZqSRs0Rb.net
>>911
たとえば、4人の人間がそれぞれ3台の車を持っているときと
3台の車にそれぞれ4人の人間が乗っているときとでは
乗数と被乗数が明確に異なり、答えも12台と12人で全く違ったものになる。
アレイ図を最終兵器だと勘違いしている単純な人は、この違いを区別できず
4人と3台の長方形のアレイ図を、意味も考えずにルーチンとして書くだけ。
アレイ図真理教のカルト信者は、アレフ並の単細胞だね。

936:132人目の素数さん
17/01/07 20:38:34.28 Po3Dxmax.net
>>890
予想される反応
「答えは合ってんじゃねーか考え方がバツとかふざけんじゃねーよ
5皿に3個ずつだったら5×3なのは当たり前じゃねーか
なんでそんなクドクド説明しなきゃなんねーんだよ
これだからアホ低脳教師とはやってられねーんだよ」

どこかで見たような風景ですね

937:132人目の素数さん
17/01/08 13:35:22.18 zzOMP0Oj.net
大体の教え方には穴があるんだよなぁ・・(ゴクリ

938:132人目の素数さん
17/01/08 20:06:32.18 HB6LY6+/.net
積分定数はなぜ小学生を自分の塾で教えないのだろうか?
所詮はツイッターで誹謗中傷を繰り返したいだけなのか?

939:132人目の素数さん
17/01/08 20:14:30.36 Njwrfy5l.net
>>914
アレイ図の個々のマルが人を表すのか車を表すのか
そういうことを捨象して4×3とやれることを
「掛け算を理解した」と呼ぶのではないのか?
何を言ってんだか。

940:132人目の素数さん
17/01/08 20:19:12.75 4TTt+c3C.net
アレイ図?での掛け算の定義ってなんなんですか?
丸の数を求めることですか?
たとえば、4人の人間がそれぞれ3台の車を持っているとき
このときどうして4×3だか3×4だかの丸に対応することがわかるんでしょうか?

941:132人目の素数さん
17/01/08 20:39:42.27 /n/lDtev.net
足し算のみのテストは満点だった。
掛け算のみのテストも満点だった。アレイ図も交換法則も使える。
しかし掛け算と足し算が混ざるテストでは80点だった。
原因は足し算の場面で掛け算を使ってしまったからだった。

この場合、掛け算を理解したと言えるだろうか?

942:132人目の素数さん
17/01/08 22:49:59.91 Njwrfy5l.net
無茶な主張をする前に、実際に
そんな子がいるかどうか考えようね。
よしよし。

943:132人目の素数さん
17/01/08 23:01:20.78 /n/lDtev.net
相当なレアケースだろうということかい?

944:132人目の素数さん
17/01/09 08:01:12.07 zVIxjheH.net
小学生を教えたことのないID:Njwrfy5lは、
机上の空論しか言えないね。
918で「アレイ図がかければ掛け算を理解したと呼ぶ」と言ってることからわかるように
相当の独善家。

945:独善をググれ
17/01/09 16:51:43.97 O/JMxhbY.net
教えたことのある者は、
「こう教えることになっている」と
「こう教えるとうまくいく」の
区別がつかない奴が大半だからな。

946:132人目の素数さん
17/01/09 17:16:58.09 zVIxjheH.net
>>924
教えたことのない者は、
「こう教えることになっている」に対する批判は、やりたい放題だが、
「こう教えるとうまくいく」の根拠を示すことができない。
なぜなら教えたことがないから。
「こう教えるとうまくいくだろう」という脳内妄想しか述べることが出来ない。

947:132人目の素数さん
17/01/09 20:45:11.02 Mkl5F9hp.net
今回は議論の焦点をずらして逃げる作戦かな?w

948:132人目の素数さん
17/01/10 21:02:56.87 x3/HYNC0.net
順序自由派は、24/3が整数かどうかを口角泡を飛ばして議論しているのね。
憐れみを覚えますよ。

949:132人目の素数さん
17/01/11 09:33:06.32 wTOrP7oP.net
ホントだ、議論の焦点をずらす作戦のようだね。

950:132人目の素数さん
17/01/11 10:41:28.98 w0ySIjXv.net
>>897
>教員採用試験も受からない無能をありがたるのもおかしい
教員試験に受かった教師でも、小学校だと、
教師には少し厚いアンチョコ(教師用の指導書)が実はあって、
それを見ながらお子チャマ用の薄めの教科書に沿って小学教師は教えている。
算数を教育学部で専攻したとでもいうべきような教師でもそう。
アンチョコには書いてあって教科書には書いていない内容がある。
こういうアンチョコを見たことがある。一体何のための教員採用試験なんだと。
教員採用試験に受かることと、教える能力とは余り関係ないね。

951:132人目の素数さん
17/01/11 10:51:45.96 w0ySIjXv.net
1/1を単位分数というとか、薄っぺらな教科書には書かれてなく、
それでいて算数で扱えるような内容が意外にある。
こういうことは多くの大人は知らないでしょうね。
それぞれの単元ごとにでもいいから、もっと大人になっても
読めるような体系的に書かれた教科書を書いた方がいい。
今の算数の教科書は、卒業したらゴミ。ああいう教科書は長く使えない。

952:132人目の素数さん
17/01/11 11:19:35.05 oyw/dKri.net
アレイ図が書ければ掛け算を理解したと言えるかどうかって話じゃなかったっけ?

953:132人目の素数さん
17/01/11 11:20:22.83 w0ySIjXv.net
単位分数の正確な定義は
正の整数 m に対し 1/


954:m のように分子が 1 である分数を単位分数という なのだそうだ。



955:132人目の素数さん
17/01/11 12:34:54.63 vJ6yugto.net
単位分数と名付けることにどういう意義があるの?
分子が1であることは分数にとって何か特別なことかな

956:132人目の素数さん
17/01/11 12:54:47.51 MZ7pNBsW.net
URLリンク(twitter.com)
> 黒木玄 Gen Kuroki &#8207;@genkuroki
> @badkiz_mj #掛順 教わった通りに7×1=7、7×2=14、7×3=21とやって21÷7=3と答えた児童と、21÷7を見た瞬間に3×7が思い浮かんで21÷7=3と
> 答えた児童では、後者の児童の方がより優れているので、後者の児童をきちんと褒め称えてあげなければまずいです。

理由を「勘」としか言えない児童は本当に理解しているのか全く当てにならないだろうに
もし「たまたま当たった」だけでありそれをそのまま放置することになったらどう責任取るつもりなのか

理由を論理的に説明できる児童の方がどう考えても優秀

957:132人目の素数さん
17/01/11 13:29:28.48 MZ7pNBsW.net
URLリンク(twitter.com)
> 黒木玄 Gen Kuroki &#8207;@genkuroki 2014年5月17日
> #掛算
>「わり算21÷7の答えは何だんの九九を使ってもとめればよいですか」への「3のだん」という回答に「正解の3を知った後でないと
> 3の段とは言えないから」のような理由でバツをつけるのは非論理的でかつ無慈悲な行為でしょう。続く

答えを求める前の割り算の計算の仕方の話であって「21÷7」に限定される話ではないのだけれど。
「わり算25÷7の答えは何だんの九九を使ってもとめればよいですか」は「21÷7」と同じ理由で「7のだん」を
使うわけだけれども黒木氏は「何のだん」と答えるのだろうか?
計算結果を知る前に「商は3だが余り4なので3の段は使えない」などと発言したら大笑いだ

958:132人目の素数さん
17/01/11 16:43:57.65 c8gu2xUj.net
21÷7とは、
□×7=7×□=21
を満たす□のことだから、
「□×7の行」か「7×□の列」を見て探すより他はない
被乗数を7とするものを7の段と呼ぶのだから
何の段を使って求めればよいかと訊ねられたら7の段を使ってと答える他ない

3の段である3×7の欄を見たのは、21÷7が3に等しいことを検算するためであって答えの3を求めるためではない

3×7の欄をどのように探し当てたかとなれば、掛け算九九の表をすべて検索したわけだから3の段を使って求めたと答えるのは誤り

959:132人目の素数さん
17/01/11 19:57:40.10 UeH8is6o.net
黒木ってアホだよね。
さすが万年助手だけのことはあるね。

960:132人目の素数さん
17/01/11 23:00:17.38 wTOrP7oP.net
また、黒木の引用か。
今度は何を過去の話にしたいんだ?

961:132人目の素数さん
17/01/12 03:56:03.99 ZU0+A6BT.net
>>933
分母が正の整数で分子が1である分数を正則分数という。
非負整数と分数との和で表され、始めに現れる分数以降からは
分数の分母に更に正の整数と分数の和が含まれる分数を連分数という。
特に、分母の分数がすべて単位分数である連分数を、単純連分数或いは正則連分数という。
……
とかいうように正則分数を用いて連分数を定義出来るだろう。
この定義から、正の帯分数はすべて単純連分数であることになる。
お子チャマが1番はじめに習う分数は1/1や1/2とかの分数で、単位分数だろう。

962:132人目の素数さん
17/01/12 04:20:50.18 ZU0+A6BT.net
>>933
単位分数を用いた連分数の定義は
>分母が正の整数で分子が1である分数を「単位分数」という。
>非負整数と「分母が2以上の単位分数」との和で表され、始めに現れる「分母以降」からは、
>分数の分母に更に正の整数と分数の和が含まれる分数を連分数という。
>特に、分母の分数がすべて単位分数である連分数を、単純連分数或いは正則連分数という。
>……
ね。定義がおかしかった。

963:132人目の素数さん
17/01/12 04:31:58.97 ZU0+A6BT.net
>>933
あと、>>939
>正則分数を用いて連分数を定義出来るだろう
の「正則分数


964:」は「単位分数」ね。



965:132人目の素数さん
17/01/12 18:02:17.26 1+X5j1lf.net
>>925

教えたことのある人間がこの手の議論で見せる最大の欠点は、自分の限られた経験が全てで普遍化しようとする点だ

> 「こう教えるとうまくいく」の根拠を示すことができない。

それは教えたことのある人間も同様
教えたことのある人間が出す根拠は結局は「だってそう教えて上手くいったからだ」以上のものはない

さらに教えたことのある人間が「こう教えると上手く行く」と主張しても、そのほぼ全ての場合、
少数の「上手く行かなかった子供たちの例」を無視して「上手く行った」と主張しているだけ

少数の「上手く行かなかった」例がなぜ「上手く行かなかった」のかの反省や分析を欠いているケースがほとんど

順序固定強制反対派の主張は、人の考え方は十人十色だから一通りの考え方を強制すると必ず脱落し寧ろマイナスになる子供が出るという点

だから多数で上手く行く方法を「子供たちに推奨する」のは何も問題はないが、多数で上手く行く方法を全ての子供に強制し従わねば減点するのは
百害あって一利なしだ、と言ってるのだよ

順序固定強制派は要するに全体主義なのだ
多くが良ければ少数にはマイナス効果が出ても構わない、その少数の子供たちは多数のための捨石か人柱だ、
それこそが強制派の主張していること

966:132人目の素数さん
17/01/12 18:56:20.51 Y6UXUvf2.net
妄想で話されてもねえ

967:132人目の素数さん
17/01/12 19:54:39.78 I0hej2RU.net
そうだね、妄想のを根拠に授業するのは良くないね。
教師に「ちゃんとやれ」と言うと、「だって忙しい」
とかしか返事が返ってこないけれど。

968:132人目の素数さん
17/01/12 20:07:14.36 imlJ8Msq.net
子供1人に教師1人をつける事が可能ならそのような主張も可能なのだろうが…
ちょっと無理だよなあ

969:132人目の素数さん
17/01/12 20:31:51.20 L/zJAx/b.net
>>942 教えたことのある人間がこの手の議論で見せる最大の欠点は、自分の限られた経験が全てで普遍化しようとする点だ

順序自由派は、教えた経験が全くないのに自分の限られた考えが全てだと思って普遍化しようとするよね。

>順序固定強制派は要するに全体主義なのだ
「アレイ図が書ければ掛け算を理解した」と言って、アレイ図至上主義にして押し付けるのも、ある意味全体主義だけどね。
掛け算がわかっていなくても、2つの数が与えられると安直にアレイ図をかけば良いと思う子供がいることを無視しているよね。

970:132人目の素数さん
17/01/12 23:59:21.30 RC3R6wmA.net
順序指導されてなくてよかったって話はちょいちょい見かけるね。
もちろん授業への不満は特に書かれていない。
その存在を無視するのが固定派の特徴かな。

>>942
>多くが良ければ少数にはマイナス効果が出ても構わない、その少数の子供たちは多数のための捨石か人柱だ、

順序指導のせいで混乱する子供がいるか確認使用ともしない。
マイナス効果は全て子供が理解していない事にする。
それこそが強制派クオリティ。

971:132人目の素数さん
17/01/13 01:46:39.26 I9elmAwH.net
強制派もなにも、教師は皆そうだよ。
要するにコーチ屋だからな。

972:132人目の素数さん
17/01/13 02:17:39.34 CN59Vs9G.net
>>947
能書き垂れてないで実績を出せばいいんだよ。
なぜしないの?

973:132人目の素数さん
17/01/13 08:16:11.21 0y6CyDiJ.net
だから結局どう教えてその理解をどう確認すればいいんだよ?

974:132人目の素数さん
17/01/13 20:53:17.66 Bd93if/Z.net
本当にわかっているかどうかなんて、なかなか確認は難しいよね。
答えがあっているからわかっているとは限らない。
たとえば微分がわかっていなくても公式さえ使えれば正しい答えが出る。
掛け算がわかっていなくても、与えられた2つの数値からアレイ図という一種の図形的な公式を使えば答えの数値は出る。
アレイ図がかければ万事よし、というのは能天気すぎるよね。

975:132人目の素数さん
17/01/13 23:23:51.06 I9elmAwH.net
文中から「づつ」を拾って(いちあたり)×(いくつぶん)に
落とし込めたら万事よし、の能天気さに比べたら、
意味が解って計算することを要求しているだけ
アレイ図方式のほうがまだしも真面目にやってるようだが。

976:132人目の素数さん
17/01/13 23:42:26.31 Bd93if/Z.net
>>952
アレイ図方式でやるのは意味が解って計算していて
文中から「ずつ」を拾ってやるのは意味がわかっていない、というのは
順序自由派特有の勝手な思い込みだよね。
アレイ図方式でも意味がわからずに長方形を作るだけの子供もいることを
決して認めようとしない。
順序自由派はアレイ図を強制したいだけなんだよね。
掛け算順序の代わりに別のものを強制したいだけ。

977:132人目の素数さん
17/01/13 23:48:37.58 KKoP0geL.net
お皿が2枚あります
その上にはりんごが3個ずつ乗っています
りんごはいくつありますか?

この問題をアレイ図で解くときには、アレイ図中の◯は何を表すんですか?

皿ですか?りんごですか?

978:132人目の素数さん
17/01/14 00:18:07.39 P3sOqHFI.net
皿が2枚、りんごが3個、りんごは何個?
皿が2枚、りんごが3個ずつ、りんごは何個?

979:132人目の素数さん
17/01/14 00:18:43.50 e0+eBFbO.net
>りんごはいくつありますか?

さて、どっちだと思うのかな?

980:132人目の素数さん
17/01/14 00:18:54.32 sy7XaBbV.net
アレイ図の話なら約数が多数あるパターンで話をしないとね
卵6個入りパックが8パックある場合にどんなアレイ図を書けばいいんだろうね?
3×16のパターンも正解なのかね?

981:132人目の素数さん
17/01/14 00:25:24.56 sy7XaBbV.net
5円玉6個の合計金額もどういうアレイ図になるのかな?

982:132人目の素数さん
17/01/14 02:20:03.60 e0+eBFbO.net
>>957-958
それが解らない奴は、掛け算が何だか理解していない。
ほら、アレイ図を書くと理解度が現れるじゃない。

983:132人目の素数さん
17/01/14 02:47:53.84 zqe2ZDMj.net
>>956
掛け算に順番がないなら、皿でもいいんじゃないんですか?
りんごに限定してしまうなら、掛け算に順番があるということになるのではないですか?

984:132人目の素数さん
17/01/14 07:16:31.53 cGzTFSCH.net
>>959
957や958の問題で、アレイ図をかく必要はないな。書かない解法のほうが簡単。
「アレイ図を書くと理解度が現れる」と言ってるのは馬鹿丸出し。
アレイ図でしか考えられないのは、それこそ思考の硬直化で掛け算が何かを理解していない。
また、「5人がそれぞれ皿が2枚持っており、各皿にはりんごが3個ずつあり、各りんごには種が4個ずつあるときの種の総数」というときは
4次元アレイ図はかけないので「ずつ」を拾っていって計算するほうが簡単だな。


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch