現代数学の系譜11 ガロア理論を読む25at MATH
現代数学の系譜11 ガロア理論を読む25 - 暇つぶし2ch608:現代数学の系譜11 ガロア理論を読む
16/11/27 14:08:51.64 dKz7cXDk.net
>>554 つづき

例えばネイピア数の公式 (πの公式はこの粗末な板で書くには複雑すぎる・・・)
URLリンク(ja.wikipedia.org)
ネイピア数の表現
(抜粋)

級数による表現
ネイピア数 e は次のような級数で表される。

1. e = Σ k 0→ ∞ (1/ k !)
2. e = Σ k 0→ ∞ ((k+1)/ k !)/2

(引用終り)

1式-2式=Δ(誤差)

で、いわゆる無限小数展開(=コーシー列)では、Δ(誤差)はゼロに収束する
∵ヒルベルト空間では、内積(~距離)が入り、収束が保証されているから

まあ、大げさに言わなくても、当たり前

だが、時枝のR^N空間では、そうではない。
無限小数展開(=コーシー列)では、少数のしっぽの方は、ゼロに収束するから、小さな違いは無視していい。だから、1式と2式とは収束先は同じで、ネイピア数 e

だが、時枝のR^N空間では、あたまの箱もしっぽの箱も軽重は付けられていない。だから、しっぽの先の差が大きな問題となる
いわば、1式-2式=Δ(誤差)のΔが消えない。( 例えだが、無限小数展開では、Δ=D/10^n みたいな形で、少数の下位の桁はどんどん小さくなる。が、時枝のR^N空間ではそうではない )

ところで、上記のように、1式と2式とが明示的に与えれていればともかく、1式や2式が隠されていて(明示なし)、はき出される数列のみを見て、同値か否か
その判断ができるのか?

それ、上記の”円周率計算の世界記録は12.1兆桁らしいが、これって本当にあってるの? ”ってこと
人類はいまだ円周率πの無限小数展開のしっぽがどうなっているか知らないのだ。知っているのは、12.1兆桁あたりまで

可算無限個の箱の数列のしっぽの同値類なるものは、上記のような胡散臭さがある
人類はいまだどの一つの超越数さえ、無限小数展開のしっぽをしらない

そして、無限小数展開では、箱に入る数はわずか0~9にすぎないのだ
無限小数展開は、コーシー列と同一視できるから、ヒルベルト空間内。 圧倒的に扱いやすい。時枝のR^N空間よりは圧倒的に扱いやすい

それでもなお、人類はいまだどの一つの超越数さえ、無限小数展開のしっぽを具体的にしらない!


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch