16/11/25 23:56:45.24 KR8OPnFq.net
>>370
補足しておく
任意の偶数∈N(=自然数の集合)
これは良いだろ
任意の偶数は、しばしば2nと書かれる。だから
集合{1,2,・・・,n,n+1,n+2,・・・,2n}⊂N(=自然数の集合)
これも良いだろう
そこで2n+2として
集合{1,2,・・・,n,n+1,n+2,・・・,2n,2n+1,2n+2}⊂N(=自然数の集合)
↓↑(全単射)
集合{A1,A2,・・・・,An,Ae, B1,B2,・・・・,Bn,Be}
が成り立つ
極限をとっても
集合{1,2,・・・,n,n+1,n+2,・・・,2n,2n+1,2n+2}⊂N(=自然数の集合)
lim n→∞ 集合{1,2,・・・,n,n+1,n+2,・・・,2n,2n+1,2n+2}⊂N(=自然数の集合)
が成り立つ
上記の”↓↑(全単射)”は、極限 lim n→∞でも成り立つことは明白
まさか、
lim n→∞ 集合{1,2,・・・,n,n+1,n+2,・・・,2n,2n+1,2n+2}⊂2N(N=自然数の集合)
とか
lim n→∞ 集合{1,2,・・・,n,n+1,n+2,・・・,2n,2n+1,2n+2}⊂2N+2(N=自然数の集合)
などという人はいまい(^^;