16/11/13 23:40:37.40 V7Qq+5Yj.net
>>277-291
>>266のつづき
1)時枝記事で見ると、>>114「箱が可算無限個ある」から、これは先のレベル合わせでいう、可算無限(アレフゼロ) 。無限大記号∞。ここはしっかり押さえておこう。定義だから(重要なので再録)
2)可算無限個の箱を1列に並べる。そして、先頭の箱から順に自然数を1から順に入れていく。これを集合Vとする。数列としては、1,2,3,・・・,n,・・・。この数列は、∈R^N
3)このとき、先頭の箱から順に連番を書くとする。1から順に。箱の番号は、1,2,3,・・・,n,・・・となる
(なお、奇数番の箱は赤、偶数番の箱を青に塗ることにしよう。)
4)選択公理を仮定する(可算選択公理でも可)。
奇数番の赤箱のみを取り出す。その集合をV1としよう。残った、偶数番の青箱の集合をV2としよう。
5)集合V1で箱から数だけを取り出した集合をV1'とする。同様に、V2で箱から数だけを取り出した集合をV2'とする。また、Vで箱から数だけを取り出した集合をV'とする。
6)明らかに、V1'∪V2'=V'=N(自然数(0を除く))
7)集合V1、V2は、箱の番号を使って、順序集合とすることができる。
なので、集合V1から、数列1,3,5,・・・,2n-1,・・・が作れる。同様に、集合V2から、数列2,4,6,・・・,2n,・・・が作れる。両数列とも、∈R^N
8)奇数列1,3,5,・・・,2n-1,・・・と、偶数列2,4,6,・・・,2n,・・・とを連接すると、
自然数を並べ変えた1,3,5,・・・,2n-1,・・・, 2,4,6,・・・,2n,・・・という数列を作ることができる。この数列も、∈R^N ∵自然数Nを並べ変えたに過ぎないから
つづく