現代数学の系譜11 ガロア理論を読む25at MATH
現代数学の系譜11 ガロア理論を読む25 - 暇つぶし2ch173:現代数学の系譜11 ガロア理論を読む
16/11/05 23:00:18.46 DzICE8Th.net
>>155
Kは可算無限、Nと同じく可算無限
それで話は合うだろ?
ここ(>>149)で言っていることは、決定番号の集合Kは数列の長さNから影響を受けるということ
例えば、簡単にZ^Nで考えよう (Z^N⊂R^N。(本当は正整数で済むが、N^Nでは混乱するから))
>>110でしたように、πを少数展開して、可算無限長の数列を考えよう。πから小数点を抜いた数列を作る。それをs(π)とする
s(π)∈Z^Nを認めるとしよう ∵πは超越数だから
>>110でしたように、lim(n→∞) π'n=a1. a2a3a4a5・・・an +e/10^n=3.14159265358979… 2718281828459…を示した。e= 2.718281828459…だ
ここで、e= 2.7に変更とすると、同様にlim(n→∞) π'’n=a1. a2a3a4a5・・・an +e/10^n=3.14159265358979… 27 が得られる。これから得られる数列をAとしよう
e= 1.7に変更とすると、同様にlim(n→∞) π'''n=a1. a2a3a4a5・・・an +e/10^n=3.14159265358979… 17 が得られる。これから得られる数列をBとしよう
最後の数字7が一致しているから、同値で A~B。そこで、Aの同値類の代表をBと仮定する
100列のうちの一つの数列として、e= 3.7に変更したとして、同様にlim(n→∞) π''''n=a1. a2a3a4a5・・・an +e/10^n=3.14159265358979… 37 が得られる。これから得られる数列をCとしよう
数列Cと代表Bの比較で、… 37と… 17とで、違いは、3と1のところだけ
とすると、決定番号がどうなるか? πは超越数で無限桁だということを認めるとどうなる?
なにが言いたいかというと、Z^NにおけるNの集合の性質が、決定番号の集合Kに反映されるということ
だから、決定番号を暴れないように大人しく扱いたいと思ったら、その前の数列Z^Nを規制しないとうまく行かないよと
lim(n→∞) π''''n=a1. a2a3a4a5・・・an +e/10^n=3.14159265358979… 37のような数列は含まれないようにしたい?
どうぞ、お願いします
lim(n→∞) π''''n=a1. a2a3a4a5・・・an +e/10^n=3.14159265358979… 37のような数列は含まれないようにすれば、決定番号は大人しく有限で治まるでしょ
それが可能かも知れないということは否定しないよ
簡単ではない気がするけどね・・
私は面倒だから、逆らわないようにしますよ(^^;


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch