16/09/10 14:15:47.79 q7Skbg74.net
>>513 つづき
これは内容的には無視していいかもしれんが、mathoverflowより時期が早いよね
URLリンク(brainden.com)
100 mathematicians, 100 rooms, and a sequence of real numbers Asked by Jrthedawg, July 22, 2013 New Logic/Math Puzzles - BrainDen.com - Brain Teasers
(抜粋)
Question
I am a collector of math and logic puzzles, and this must be the best I've ever seen.
100 rooms each contain countably many boxes labeled with the natural numbers. Inside of each box is a real number.
For any natural number n, all 100 boxes labeled n (one in each room) contain the same real number. In other words, the 100 rooms are identical with respect to the boxes and real numbers.
Knowing the rooms are identical, 100 mathematicians play a game.
After a time for discussing strategy, the mathematicians will simultaneously be sent to different rooms, not to communicate with one another again.
While in the rooms, each mathematician may open up boxes (perhaps countably many) to see the real numbers contained within.
Then each mathematician must guess the real number that is contained in a particular unopened box of his choosing.
Notice this requires that each leaves at least one box unopened.
99 out of 100 mathematicians must correctly guess their real number for them to (collectively) win the game.
What is a winning strategy?
(抜粋おわり)