16/09/04 22:25:32.25 FlB/9kH2.net
2.
>>444 (これは、明らかにメンター氏ではない)
以下コメントをしておく
>>430の決定番号が無限大の可能性があるという証明が理解できないと宣う方々
それは、先に書いた「可算無限個ある.箱」(つまりは自然数の集合Nがcard(N)=アレフ0(=可算無限)であること)の理解があやふやってことだよ
それで、>>430よりもっと分かり易い説明(証明)を与える。ポイントは”数列コピー+1箱取り替え法”だ
<命題:決定番号の可能な範囲は、1から無限大(上記の自然が無限あるという意味で)まである(決して有限の範囲ではありえない!)>
(証明)
1.問題のある数列 s = (s1,s2,s3 ,・・・) とする。このある数列 sから作られる完全代表系の同値類の集合をUとする
2.数列 s のコピーを作る。当然、s ∈ U (∵完全代表系だから)
3.数列 s の d番目の数 sdを、なにかsd≠s'dなるs'dに取り替える
4.つまり、s = (s1,s2,s3 ,・・・, sd,sd+1, ・・・) に対し、s' = (s1,s2,s3 ,・・・, s'd,sd+1, ・・・)となる。明らかに、s' ∈ U (∵完全代表系だから)
5.ここで、s' はsとは、しっぽがd+1から一致する。つまり、s'を代表元とすれば決定番号はd+1
6.ここで、d+1に対して、自然数の性質から後者d+2が存在する
7.上記同様に、s = (s1,s2,s3 ,・・・, sd+1,sd+2, ・・・) に対し、s'' = (s1,s2,s3 ,・・・, s'd+1,sd+2, ・・・) (但し、sd+1≠s'd+1)とできるから、この場合は、決定番号はd+2
8.上記の決定番号の構成法から、明らかに、決定番号は任意の(つまりは全ての)自然数を取ることが出来る
9.従って、決定番号の集合をDとすると、N ⊆ D。つまり、card(D)=アレフ0(=可算無限)以上
QED
なお、蛇足だが、上記証明には、記号∞はあえて使わなかった。使った方が記述は簡素だが、それでは理解できない人が出そうだからだ
また、「無限大」の理解があやふやな人から、つっこみがありそうだが、つっこみの前に、冒頭の<可算無限個についての正しい理解>と”自然数の集合Nがcard(N)=アレフ0(=可算無限)であること”の説明をよく読むようお願いする