16/07/17 10:22:02.28 ZVWBrROz.net
>>104 つづき
”n次方程式が代数的に解ける”と、”ラグランジュの分解式のn乗は、方程式の係数a1,・・・anとζ(1のn乗根で原始根)とから加減乗除で表される”は、等価だったんだ。
あまり意識していなかったが、aha!だね
それで、素数以外の場合を考えたことがないというのも、普通ガロア第一論文を読むときは、多少現代数学のガロア理論を学んでからなんだ
で、可解群というのがあってね
「組成列においてすべての商が素数位数の巡回群である」は、良く出てくる表現で、”素数限定”は当たり前と思って、それ以外を考えたことがなかったんだ
URLリンク(ja.wikipedia.org)
可解群
有限群の場合は、同値な定義として「組成列においてすべての商が素数位数の巡回群である」というものもある。
有限群の組成列の長さは有限であり、全ての単純アーベル群は素数位数の巡回群であるため、この定義は上の定義と同値である。
ジョルダン・ヘルダーの定理より、一つの組成列が上記の性質を持つ場合、すべての組成列は同様に上記の性質を持つことが保証される。
多項式のガロア群の場合は、巡回群はある体の上の冪根に対応する。無限群の場合は必ずしも同値ではない。