現代数学の系譜11 ガロア理論を読む20at MATH
現代数学の系譜11 ガロア理論を読む20 - 暇つぶし2ch840:132人目の素数さん
16/07/11 06:00:00.83 8W2iccjg.net
>>760
(>>784の続き)
Case2):nが奇数のとき。
n≡1 (mod2) だから、nに対して或る k∈N\{0} が存在して、nは n=2k+1 と表わされる。g(x,n) は
g(x,n)=x^n-1=x^{2k+1}-1=(x-1)(x^{2k}+x^{2k-1}+…+x+1) とここまでは因数分解出来る。だから、
方程式 (x^n-1)/(x-1)=0 を考えることは、代数方程式 f(x)=x^{2k}+…+x+1=0 の考察に帰着される。
Case2-1):k=1 のとき。n=2k+1=3 であり、def(f(x))=2 だから、
     fは代数的に解けることになり考えても意味がない。。
Case2-2):k=2 のとき。n=2k+1=5 であり、def(f(x))=4 だから、
     fは代数的に解けることになるから考えても意味がない。
Case2-3):k≧3 のとき。このときは、nは7以上の奇数である。そして、有限回の加減乗除と
ベキ根の操作でfを解くための公式はない。ここで、fのガロア群を考える意味が生じる。
fのQ上の最小分解体Lは L=Q(e^{(2πi)/(2k+1)},…,e^{(2(2k)πi)/(2k+1)}) で、
Lのガロア群Gが位数(2k+1)!の対称群S_{2k+1}に同型になる。S_{2k+1}の交代群の正規部分群は
自明な群しかない。だから、Gが多項式fのガロア群になり、多項式fのガロア群Gの位数は(2k+1)!になる。
ガロア群Gの順列の数(2k+1)!が方程式 f=0 の次数2kと等しくなるには、奇数 2k+1 が (2k+1)!=2k を
満たさないといけない。しかし、(2k+1)!=2k を満たす自然数kは存在しない。nは1以上の自然数kを用いて
n=2k+1 と表わされていたから、矛盾が生じる。
Case2-1、Case2-2、Case2-3 から、7以上の奇数nのときの方程式 (x^n-1)/(x-1) を考えないと
意味がないが、考える意味があるときに f(x)=0 を考えると矛盾が生じて話がおかしくなる。 (Case2終)
3以上の自然数nは任意に取っていたから、上の Case1、2 の考察から、
>(x^n-1)/(x-1)=0
>こういう方程式のガロア群の順列の数は次数と同じである。
の部分の「ガロア群の順列の数は次数と同じである。」は「ガロア群の順列の数は次数と異なる。」の間違い
になる。何の本だか知らんが、この部分は完全な間違い。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch