16/07/02 20:23:29.36 6WAr0Pko.net
>>355 ここに戻る
補足
確率過程量子化について
repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/95300/1/KJ00004736360.pdf
確率過程量子化をめぐって(筑波大学開学20周年記念第2回『非平衡系の統計物理-現状と展望』シンポジウム,研究会報告) 並木 美喜雄 物性研究 (1994)
(抜粋)
置き換えを実行すれば、直ちにブラウン運動の拡散方程式が出てくる(αは拡散
定数)。この対応を使えば、未知の"エーテル"中をブラウン運動する古
典的粒子の挙動が量子力学的に見えるのではないか! この発想の下に
Schr6dinger自身を含めて何人かの人たちが量子力学を古典的なブラウン
運動論で置き換えようとした。未知の"エーテル"を記述する力学変数
をしばしば"隠れた変数"といい、この種の理論を"隠れた変数理論"という。
この方向の研究に冷水をかけたのがvonNeumannのNO-GO定理
である。彼はある数学的前提をおいて、"隠れた変数"が存在しないこと
を数学的に証明した。彼の権威のためか、"隠れた変数理論"の研究は一
時途絶えた。しかし、この定理の数学的前提は厳しすぎたのである。戟
後になって、D.Bohmはこの定理を越えて、"隠れた変数理論"の一つの
可能な形を示した。
量子力学を消そうを思わなくても、古典的なニュートン方程式(上式
でVQ-0とおいた式)にVQをつけ加えて、経過を逆に辿れば、波動関
数とシュレーディンガー方程式が現れる。これは、古典力学から量子力学
を組み立てる一つの量子化法-すなわち、確率過程量子化である。
5.おわりに
以上、第三の量子化法ともいうべき確率過程量子化の歴史的背景と棉
略を説明し、それを通常の量子化法(正準量子化、経路積分量子化)が
うまく機能しないはずの特異系(底なし場およびBorn-Infeld場)に適用
して、一応の結果を得た。