16/06/19 13:43:09.27 qTwO0zaS.net
>>42
間違いはないけど、じゃあ正確に書こう。
>任意の n∈N に対して、次の命題 P(n) が成り立つ:
>P(n):X_1,…,X_n をQ上代数的独立な超越数とする。
> Q(n)={f∈Q(X_1,…,X_n)|deg(f)=n} とする。
> このとき、任意の f∈Q(n) に対して f(X_1,…,X_n)≠0。
大体は、eが超越数だからといって、多項式の定義と同様にして帰納法を
用いた代数的な証明で、eとπがQ上代数的独立と結論付ける感じだな。
代数的には多項式の定義のときeとπを文字として扱って定義出来るが、
だからといって、超越数e、πに対して同様な代数的手法でeとπがQ上
代数的独立と結論付けることは出来ない。そんな感じだな。