16/06/19 10:25:15.45 suG/dCz5.net
>>34
どうも。スレ主です。
レスありがとう
喜んでいるのは、私とは逆の意味だと思うけど
で、>>35で>>29の補強をした
あなたがどこまで分かっているのか不明だが、私の理解は>>35に示したように、数学的帰納法や超限帰納法は、ZFC公理系で成り立つ
それを踏まえての、>>29だということを忘れないように。だから、ZFCを否定しない限り、数学的帰納法や超限帰納法には公理系から導かれる反例など存在しない!*)
但し、>>29に示した開集合族 Un = (-1/n, 1/n) で、n→∞の極限で1 点集合 {0}に収束するような場合に、開集合から閉集合に性質が変わるような場合は、数学的帰納法に注意が必要だと
しかし、それは数学的帰納法の有効性や射程範囲を否定するものではないよ
*)不完全性定理から、否定も肯定もできない命題は存在すると言われているが
URLリンク(ja.wikipedia.org)
ゲーデルの不完全性定理
第1不完全性定理
自然数論を含む帰納的公理化可能な理論が、ω無矛盾であれば、証明も反証もできない命題が存在する。
第2不完全性定理
自然数論を含む帰納的公理化可能な理論が、無矛盾であれば、自身の無矛盾性を証明できない。