16/06/19 07:20:11.31 suG/dCz5.net
>>16 つづき
11.以上、時枝パラドックス(論理的な矛盾)について述べてきたが、では、解法のどの部分に問題があるのか?
思うに、前スレ>>521 ”現代確率論からすれば、測度論(完全加法族)をベースとして、確率が基礎づけられなければならない
ところが、時枝の>>3-4の無限の実数列のしっぽの同値類から商集合をつくって、代表元から決定番号を決め、確率を論じるところで
時枝が>>5で、カミングアウトしているように、「R^N/~ の代表系を選んだ箇所で選択公理を使っている.その結果R^N →R^N/~ の切断は非可測になる.」と
まあ、「非可測になってますよ」というベースで、果たして正確に確率が計算できるのかどうか?
そういう目で見ると、”この仮定が正しい確率は99/100”>>4のところが、直観に頼ってしまって、実は数学的な証明がなされていないことに気付く
いま私が考えているのは、時枝パラドックス>>16で、一番あやしい部分がここじゃないかと(^^;”
12.あと、無限数列のしっぽによる同値類分類も、従来の数学では見ない斬新な(皮肉に言えば奇妙奇天烈な)同値類分類
無限数列のしっぽによる同値類分類の数学的意味(例えばそれで何が言えるのか?)が、分からないので、
前スレ>>125の”数学考究2 確認小テスト解説(10-8) 落合理 大阪大学 20151008” URLリンク(www.math.sci.osaka-u.ac.jp) なども読んだ
「係数が無限個0 でないものもゆるす形式的べき級数K[[X]] を考えると, V = K[[X]] もK ベクトル空間であるが, 次元は非可算無限である.」という
いやはや、難しい。”次元は非可算無限”? なんとなく分かったような分からないような
13.従って、いま思っているのは、無限数列のしっぽによる同値類分類という奇妙奇天烈な手法と、「非可測になってますよ」というベースで決定番号の確率を計算するという数学的に未証明な部分との隙間に、トリックがあるのかなと
以上前スレからの”時枝パラドックス(論理的な矛盾)”の現状まとめでした