16/06/19 04:17:19.50 qTwO0zaS.net
>>848
趣旨が分からないならそれでいい。
>>849
命題
(a⊂b)∧(a⊃b)
が成り立つことだな。
あと、>>850の「数学を」は「数学の」の間違いな。
914:132人目の素数さん
16/06/19 04:20:50.55 6ddPXeMn.net
>>852
検索に時間がかかったな。
仕上げにa⊂bの説明を願おうか。
これも即答出来ねばまずい。
検索しまくるのかねまたw
915:132人目の素数さん
16/06/19 04:33:06.56 qTwO0zaS.net
>>851
以前、私が四色定理の証明を試みたとき、或る専門家に証明を見せたら
間違えて指摘された形の帰納法の使用をそのままの形で述べただけ
のつもりだが、その間違いを忘れて思い出せないのだ。
916:132人目の素数さん
16/06/19 04:40:02.42 7/wN1++F.net
>>854
そうか。だから同じ間違いを繰り返すんだろうな
917:132人目の素数さん
16/06/19 04:47:34.11 fJQswypL.net
>>831
>「任意の x∈R に対して、x<2 は成り立たない」
は
「x<2 なる x∈R は存在しない」
と同じ意味であって、かつそれ以外の意味は無い、すなわち曖昧でないと思うのだが。
918:132人目の素数さん
16/06/19 04:51:49.17 7/wN1++F.net
>>856
まあそうなんだけど、for all xと書かれていないために曖昧だ、というあまり面白くない議論が昨日あったみたいですよ。
それに対して不等号が曖昧だという人もいて、議論のレベルは劣化の一途を辿っておるわけです
919:現代数学の系譜11 ガロア理論を読む
16/06/19 04:52:47.60 suG/dCz5.net
(趣旨は同じ)
3.つづき
問題に戻り,閉じた箱を100列に並べる.
箱の中身は私たちに知らされていないが, とにかく第l列の箱たち,第2列の箱たち第100 列の箱たちは100本の実数列S^1,S^2,・・・,S^lOOを成す(肩に乗せたのは指数ではなく添字).
これらの列はおのおの決定番号をもつ.
さて, 1~100 のいずれかをランダムに選ぶ.
例えばkが選ばれたとせよ.
s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない.
第1列~第(k-1) 列,第(k+1)列~第100列の箱を全部開ける.
第k列の箱たちはまだ閉じたままにしておく.
開けた箱に入った実数を見て,代表の袋をさぐり, S^1~S^(k-l),S^(k+l)~SlOOの決定番号のうちの最大値Dを書き下す.
いよいよ第k列 の(D+1) 番目から先の箱だけを開ける:S^k(D+l), S^k(D+2),S^k(D+3),・・・.いま
D >= d(S^k)
を仮定しよう.この仮定が正しい確率は99/100,そして仮定が正しいばあい,上の注意によってS^k(d)が決められるのであった.
おさらいすると,仮定のもと, s^k(D+1),s^k(D+2),s^k(D+3),・・・を見て代表r=r(s~k) が取り出せるので
列r のD番目の実数r(D)を見て, 「第k列のD番目の箱に入った実数はS^k(D)=r(D)と賭ければ,めでたく確率99/100で勝てる.
確率1-ε で勝てることも明らかであろう.
(補足)
S^k(D+l), S^k(D+2),S^k(D+3),・・・:ここで^kは上付き添え字、(D+l)などは下付添え字
920:現代数学の系譜11 ガロア理論を読む
16/06/19 04:57:17.95 suG/dCz5.net
>>858 誤爆しました。スマソ m(_ _)m
新スレ立てました(下記)。ここも暫く使えると思います。
それまでは、ここで。新スレは、整備中です。
現代数学の系譜11 ガロア理論を読む20
スレリンク(math板)
921:132人目の素数さん
16/06/19 04:58:12.14 qTwO0zaS.net
>>853
バカかw こっちはフリーズ状態で検索すら出来んのだ。
aを集合 とする。命題
(x∈a)→(x∈b)
が成り立つとき、aをbの部分集合といい a⊂b と書く。
特に、a≠b であるとき、aをbの真部分集合という。
922:132人目の素数さん
16/06/19 05:02:48.54 7/wN1++F.net
>>857
ははこれも曖昧だったか
要は日本語で書いてしまうと部分否定なのか全否定なのか分からんときがある、という主張があったということですな
923:132人目の素数さん
16/06/19 05:09:21.37 fJQswypL.net
>>839
偽の形の命題とは、真の命題の否定形。
曖昧と感じるのは、否定が命題のどの部分にかかっているかが曖昧な場合だろう。
曖昧さのために真偽が定まらなければ、それは命題ではないから、
「(偽の形の)命題」と言った瞬間、そのような曖昧さは許されない。
924:132人目の素数さん
16/06/19 05:14:59.14 fJQswypL.net
私の理解では(間違ってるかもしれないが)、「全ての」と「任意の」は同義。
∀x∈R と for all x∈R は数学的には等価でどちらで書いてもよい。
925:132人目の素数さん
16/06/19 05:25:33.48 qTwO0zaS.net
>>853
>>860の訂正:
aを集合 とする。→ a,b を集合 とする。
926:132人目の素数さん
16/06/19 05:37:46.94 qTwO0zaS.net
>>863
>「全ての」と「任意の」は同義。
そのスタンスなら、「すべてのaは、bでない」といったら
「如何なるaについてもbではない」とも解釈出来
「すべてのaに対して、必ずしもbが成り立つとは限らない」とも
解釈出来るな。論理的にはそうなる。
927:132人目の素数さん
16/06/19 05:40:03.35 7/wN1++F.net
>>863
いや、あなたが正しいよ
for any とfor allは同じとしてよい
だけど命題を日本語で書き、最後に"でない"と否定で終えたとき、それを一般的な日本文としてみると、部分否定しているのか全部否定しているのか分からない、という話です
928:132人目の素数さん
16/06/19 06:00:19.02 qTwO0zaS.net
>>866
否定形の文でなくとも any は曖昧さが残る書き方のようだぞ。
それに対し、arbitrary だと曖昧さが残らない。
「すべて」のと「任意の」とを同義として扱うスタンスでは、
all は arbitrary に当たるよな。だから for any と for all は微妙に違うようだ。
929:132人目の素数さん
16/06/19 06:13:53.00 7/wN1++F.net
>>867
もうこの話題はええわw
あなたが主張したいことはなに?
>>872の言うことはもっともだと思うが。
帰納法について、貴方は何が言いたいの?
下にまとめてみな
930:132人目の素数さん
16/06/19 06:14:39.45 7/wN1++F.net
>>872じゃなくて>>862
931:132人目の素数さん
16/06/19 06:21:16.33 qTwO0zaS.net
>>868
それなら、いい。
何もいうことはない。
932:132人目の素数さん
16/06/19 06:25:44.69 fqrZFe1J.net
なるほど、俺の指摘はガン無視で「日本語」の問題にひたすら難癖つけてたわけか
だったら自分の主張する命題をまず論理記号使って書けよ
933:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています