現代数学の系譜11 ガロア理論を読む19at MATH
現代数学の系譜11 ガロア理論を読む19 - 暇つぶし2ch809:は文字化けがあるので、リンク先を見て下さい) 集合と位相第一 講義ノート 東京工業大学 理学部 2011 年度前期 山田光太郎 >>389 では http://www.math.titech.ac.jp/~kotaro/class/2011/set/lecture.pdf (抜粋) 10 開集合・閉集合 ”以下,とくに断らない限り,Rn にはユークリッド距離が与えられているものとする.特にR には d(x, y) = |y ? x| により距離(標準的な距離) が定義されているものとしておく. ■開集合距離空間(X, d) 上の点p ∈ X と正の実数r に対してBp(r) = {x ∈ X | d(p, x) < r} を点p の (距離d に関する) r-近傍という. 定義10.1. 距離空間(X, d) の部分集合U ⊂ X が開集合open set である,とは,各x ∈ U に対して正の実 数" でBx(ε) ⊂ U となるものが存在することである.” と、ここから入って ”例10.3. ユークリッド空間Rn の1 点からなる集合{p} は開集合でない.これを示すには,任意の正の数" に対してBp(ε) が{p} の部分集合でないことを示せば良い.” ”命題10.5 (開集合の性質). 距離空間(X, d) に対して (1) φ, X は開集合である. (2) 任意のX の開集合族{Uλ | λ ∈ Λ } に対して∪λ ∈ ΛUλ は開集合である. (3) 開集合U1, U2 に対してU1 ∩ U2 は開集合である. 命題10.5 の(3) から有限個の開集合の共通部分は開集合であることがわかる.” と展開している そして、>>389の ”例10.6. 自然数n に対してUn = (-1/n, 1/n) (開区間) とおくと,Un はR の開集合(演習問題10-1). 集合族{Un | n ∈ N} を考えると ∞∪n=1 Un = (-1, 1), ∞∩n=1 Un = {0} となり,この集合族の共通部分は開集合ではない(例10.3). すなわち,無限個の開集合の共通部分は開集合とは限らない.” だと




次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch