16/06/12 14:12:22.47 kpJ7HECM.net
スレ主の定理(>>614)を再掲し、まとめておこう。
-----------------------
スレ主の定理:「数学的帰納法は、ZFCの選択公理と無限公理を認めるなら、”n=∞でも成り立つ”」(>>614)
この定理の適用条件はスレ主自身も理解しておらず不明である(>>624)。しかしスレ主によると、
>>618
> 「1/1 ≠ 0, 1/2 ≠ 0, 1/3 ≠ 0, 1/4 ≠ 0, ... , 1/n ≠ 0, ... 。よって、1/∞ ≠ 0」
は誤用であり、
>>618
> 「数学的帰納法により無限個の開集合の共通部分もまた開集合となる」
も誤用であるが、
>>264
> いや、普通に考えると、「任意の有限部分族が独立」から、”「常に無限個の組」”が証明できるんじゃないかい?
>>579
> そして、時枝>>7の「(2)有限の極限として間接に扱う,・・の方針が可能である.」という主張は、単純には成立しないと思う。
> ”有限の極限として間接に扱う”は、即ち帰納法に他ならないから
> だから、時枝も間違ったんだ。
とあるように、確率変数の無限族の独立性の議論においては適用できる。
すなわち、任意の有限部分族が独立であれば無限族全体に対しても独立であり、
ΠP(A1∩A2∩A3∩・・・)=ΠP(Ak)[無限積]
と書けるのである。
-----------------------
こういう発想が出てくるところがスレ主の素晴らしいところである。
2ch侮るまじ。日本の数学界の底辺は非常な高みにあると言えよう。