16/06/12 09:20:55.20 3IVp+PZf.net
>>577
ぼく、数学科2年生?
なら、コンパクト性定理を自分で調べてみて。君なら理解できるだろうよ
下記より、「実数や自然数の超準モデルの存在」が成り立つから、コンパクト性定理が適用可能な範囲では反例は存在しないよ
URLリンク(ja.wikipedia.org)
コンパクト性定理
(抜粋)
一階述語論理の文の集合がモデルを持つこと(充足可能であること)と、その集合の任意の有限部分集合がモデルを持つことが同値であるという定理である。
つまりある理論の充足可能性を示すにはその有限部分についてのみ調べれば良いという非常に有用性の高い定理であり、モデル理論における最も基本的かつ重要な成果のひとつである。
応用例
コンパクト性定理はモデル理論を含む様々な分野において多くの応用を持つ。例として、以下の定理や命題がコンパクト性定理を用いて証明される。
・実数や自然数の超準モデルの存在
・任意の順序集合が全順序に拡大できること [3]