16/06/05 11:31:36.29 i9VZxB8i.net
>>397
へへ(^^;
> 1/∞ = 0 なんて定義が書かれている本を教えてくれ。
拡大実数>>375 の中にある
なお、 URLリンク(mathworld.wolfram.com) の(7)式だ
ああ、本ね。本では無いが、数学演習V・VI 浜中真志 名古屋大 理学部数理学科2年生 第9回 2012 URLリンク(www.math.nagoya-u.ac.jp)
で、”(リーマン球面) 複素平面C に無限遠点∞ を付け足してコンパクト化した空間をC^ またはP^1 と記し、リーマン球面と呼ぶ.
C 上の直線は無限遠点∞ を付けたすとP^1 上の円となる.問題1 の写像f はf^(z) =f(z) (z≠0,∞のとき),0 (z = ∞のとき),∞ (z = 0 のとき)
と定めることによってP^1 からP^1 への写像にまで自然に延長できる.
(この f^ は値域がC に収まらないので, もはや関数とは呼べないのであるが, 実は正則写像と呼ばれる, 非常に良い性質を持った写像である.)"とあるよ
で、話は逆だ。>>393「>>371のケースなら”1/∞ = 0”という定義が必要だし」>>393で、合っているだろ?
そして、>>393東工大 山田光太郎先生「>>389のケースなら”自然数n に対してUn = (-1/n, 1/n) (開区間) "で、n→∞で共通部分 ”∞∩n=1 Un = {0}”(一点集合に収束)」は、”1/∞ = 0”という定義からだと直ちに従うってことじゃないのかい?
あなたの主張は、>>390「数学的帰納法は不完全であると言える。実際には反例が存在するから完全ではない」だったろ?
で、>>389「2.無限個の開集合の共通部分は開集合とは限らないことを示せ」で、上記山田光太郎先生の反例について、『「無限個の開集合の共通部分」が”{0}(一点集合に収束)”になる』というのを、”1/∞ = 0”という(又はそれと同値な)定義でなく、また数学的帰納法も使わずに、示せるという主張でしょ?
どうぞ、やってみて下さい。おれは、山田光太郎先生の反例は「”1/∞ = 0”という(又はそれと同値な)定義からだと直ちに従う」と言っている
そうじゃないというなら、きちんと数学的な筋を通して(数学の主張として(数学的帰納法も使わずに)論証して)貰えば結構だ
どうぞ。ぐだぐだ、文学的な修辞で逃げるなよ!