現代数学の系譜11 ガロア理論を読む19at MATH
現代数学の系譜11 ガロア理論を読む19 - 暇つぶし2ch423:現代数学の系譜11 ガロア理論を読む
16/06/04 23:31:40.81 CtkyGlEO.net
>>389 つづき
>>382
>(n∈N ⇒ P(n)は真) ⇒ (n=∞ ⇒ P(n)は真) が真であれば、数学的帰納法は不完全であると言える。
>実際には反例が存在するから不完全ではない。その反例を示すことを実体験しなさいと言ってるんだよ。
>お前の理解が少しでも進むために。別に嫌なら無理にとは言わん。勝手にしろ。
だった?
これな、おれの理解は反例でない。>>371 ”1/1 ≠ 0, 1/2 ≠ 0, 1/3 ≠ 0, 1/4 ≠ 0, ... , 1/n ≠ 0, ... 。よって、1/∞ ≠ 0”と同じだろ?
>>375 "要するに、1/∞ = 0 は定義で別扱い"(無限(極限)の場合は定義が必要) と類似
>>389 "例10.6. 自然数n に対してUn = (-1/n, 1/n) (開区間) とおくと,Un はR の開集合"
n→∞で共通部分 ”∞∩n=1 Un = {0}”でも、これある意味定義だろ?
あなたたちが言っている通り、有限の範囲では開集合。有限の間ずっとそうだよ。
で、無限(極限)で、一点集合( ユークリッド距離空間では閉集合)に収束するというのは、定義であり、別の言い方では、無限を扱う公理からの帰結だろ?
因みに、>>389 演習問題「10-3 集合X の任意の部分集合は離散距離ddisc に関する開集合であり,かつ閉集合でもある.」を引用しておく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch