16/06/04 20:39:08.30 CtkyGlEO.net
>>382
これどうよ?
URLリンク(researchmap.jp)
公理論的集合論 矢田部俊介 お茶の水女子大学2012年度集中講義「情報科学特別講義III」2013
URLリンク(researchmap.jp)
(抜粋)
公理的集合論ZFC の特徴を一言で言うと、以下の通りである。
? 超限帰納法、つまり通常の数学で使われる帰納的構成法を無限の長さの整列順序に拡張したもの、によ
り集合を構成していく。大まかに言うと、空集合から始め、無限ステップの帰納的
構成により集合を構成する。
? その際、超限帰納法による構成の「天井」、すなわちこれ以上構成を続けていけない限界が存在する。
その典型例は不完全性定理による「ZFC の無矛盾性が証明できてしまうぐらいの大きな整列順序は
ZFC では存在を証明できない」というものである。これらの限界は「巨大基数」と呼ばれる、真に大
きな無限の大きさの整列順序である。
本講義の構成は以下の通りである。まず、2 章では、公理的集合論がどのような問題意識の中で産まれてき
たのかを説明する。
3 章において、ZFC の公理とそのモデル理
論の初歩を説明する。ZFC の研究はそのモデルの研究であるが、不完全性定理の結果、ZFC がモデルを持
つことをZFC で証明することはできない。上述のように、この不完全性をどう乗り越えるかが、ZFC の研
究を行う上での鍵となる。また、4 章においては、上述の集合の超限帰納法による構成法の詳細について述べ
る。超限帰納法を行うための順序を表現する順序数を構成するとともに、代表的な反復的集合観を表したモデ
ルである集合の累積的階層V、内部モデルL 等を紹介する。そして5 章では、不完全性定理の天井を超えて
集合を構成するための代表的方法として、巨大基数を紹介する。ここでは、代表的な巨大基数として到達不能
基数と可測基数を紹介する。可測基数があると、その上で超フィルターを定義することができ、その結果、超
冪を定義し自身の初等的部分モデルを構成する事ができる。そのエレガントな世界に注目されたい。最後の6
章では、付録として、理論計算機科学で使用されるZFC 以外の公理的集合論を紹介する。