16/06/04 19:24:59.83 CtkyGlEO.net
>>374 つづき
下記拡大実数の記事が参考になるだろう
要するに、1/∞ = 0 は定義で別扱い
URLリンク(ja.wikipedia.org)
拡大実数
(抜粋)
数学における拡張実数(かくちょうじっすう、英: extended real; 拡大実数)は、実数の全てに加えて、さらに無限大を加えた数である。アフィン拡張実数 (affinely extended real number) では正の無限大 +∞ と負の無限大 ?∞ の2つを、射影拡張実数(しゃえいかくちょうじっすう、英: projective extended real number)では1つの無限大 ∞(正と負の区別がない(できない)無限遠点)を付け加える。
新しく付け加えられた元(無限大、無限遠点)は(通常の)実数ではないが、文脈によってはこれらを含めた全ての拡張実数を指して便宜的に「実数」と呼ぶこともあり、その場合通常の実数は有限実数と呼んで区別する[1]。
拡張実数の概念は、微分積分学や解析学(特に測度論と積分法)において種々の函数の極限についての記述を簡素化するのに有効である。
(アフィン)拡張実数全体の成す集合 R ∪ {±∞} は、その上の適当な順序構造や位相構造などを持つものとして補完数直線(ほかんすうちょくせん、英: extended real line; 拡張実数直線)と呼ばれ、 R や [?∞, +∞] と書かれる。
文脈から意味が明らかな場合には、正の無限大の記号 +∞ はしばしば単に ∞ と書かれる。
意義
極限
仮に、実数の集合 R に二つの元 +∞ と ?∞ を添加するとすれば、「無限遠における極限」を R におけると同様の位相的性質を以って定式化することができる。
代数的性質
今までの定義に従えば、拡張実数の全体 R は体にも環にもならない。それでも以下のような十分扱いやすい性質が成立する: